The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview.

Sarthak Pati, Ashish Singh, Saima Rathore, Aimilia Gastounioti, Mark Bergman, Phuc Ngo, Sung Min Ha, Dimitrios Bounias, James Minock, Grayson Murphy, Hongming Li, Amit Bhattarai, Adam Wolf, Patmaa Sridaran, Ratheesh Kalarot, Hamed Akbari, Aristeidis Sotiras, Siddhesh P Thakur, Ragini Verma, Russell T Shinohara, Paul Yushkevich, Yong Fan, Despina Kontos, Christos Davatzikos, Spyridon Bakas
{"title":"The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview.","authors":"Sarthak Pati, Ashish Singh, Saima Rathore, Aimilia Gastounioti, Mark Bergman, Phuc Ngo, Sung Min Ha, Dimitrios Bounias, James Minock, Grayson Murphy, Hongming Li, Amit Bhattarai, Adam Wolf, Patmaa Sridaran, Ratheesh Kalarot, Hamed Akbari, Aristeidis Sotiras, Siddhesh P Thakur, Ragini Verma, Russell T Shinohara, Paul Yushkevich, Yong Fan, Despina Kontos, Christos Davatzikos, Spyridon Bakas","doi":"10.1007/978-3-030-46643-5_38","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this manuscript is to provide an overview of the technical specifications and architecture of the <b>Ca</b>ncer imaging <b>P</b>henomics <b>T</b>ool<b>k</b>it (CaPTk www.cbica.upenn.edu/captk), a cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D and 3D images, currently focusing on radiographic scans of brain, breast, and lung cancer. The primary aim of this platform is to enable swift and efficient translation of cutting-edge academic research into clinically useful tools relating to clinical quantification, analysis, predictive modeling, decision-making, and reporting workflow. CaPTk builds upon established open-source software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together advanced computational functionality. This functionality describes specialized, as well as general-purpose, image analysis algorithms developed during active multi-disciplinary collaborative research studies to address real clinical requirements. The target audience of CaPTk consists of both computational scientists and clinical experts. For the former it provides i) an efficient image viewer offering the ability of integrating new algorithms, and ii) a library of readily-available clinically-relevant algorithms, allowing batch-processing of multiple subjects. For the latter it facilitates the use of complex algorithms for clinically-relevant studies through a user-friendly interface, eliminating the prerequisite of a substantial computational background. CaPTk's long-term goal is to provide widely-used technology to make use of advanced quantitative imaging analytics in cancer prediction, diagnosis and prognosis, leading toward a better understanding of the biological mechanisms of cancer development.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"11993 ","pages":"380-394"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402244/pdf/nihms-1608130.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-46643-5_38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this manuscript is to provide an overview of the technical specifications and architecture of the Cancer imaging Phenomics Toolkit (CaPTk www.cbica.upenn.edu/captk), a cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D and 3D images, currently focusing on radiographic scans of brain, breast, and lung cancer. The primary aim of this platform is to enable swift and efficient translation of cutting-edge academic research into clinically useful tools relating to clinical quantification, analysis, predictive modeling, decision-making, and reporting workflow. CaPTk builds upon established open-source software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together advanced computational functionality. This functionality describes specialized, as well as general-purpose, image analysis algorithms developed during active multi-disciplinary collaborative research studies to address real clinical requirements. The target audience of CaPTk consists of both computational scientists and clinical experts. For the former it provides i) an efficient image viewer offering the ability of integrating new algorithms, and ii) a library of readily-available clinically-relevant algorithms, allowing batch-processing of multiple subjects. For the latter it facilitates the use of complex algorithms for clinically-relevant studies through a user-friendly interface, eliminating the prerequisite of a substantial computational background. CaPTk's long-term goal is to provide widely-used technology to make use of advanced quantitative imaging analytics in cancer prediction, diagnosis and prognosis, leading toward a better understanding of the biological mechanisms of cancer development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症成像表型组学工具包(CaPTk):技术概述。
本手稿旨在概述癌症成像表型组学工具包(CaPTk www.cbica.upenn.edu/captk)的技术规范和架构,该工具包是一个跨平台、开源、易用且可扩展的软件平台,用于分析二维和三维图像,目前主要用于脑癌、乳腺癌和肺癌的放射扫描。该平台的主要目的是将前沿学术研究迅速有效地转化为临床有用的工具,包括临床量化、分析、预测建模、决策和报告工作流程。CaPTk 以 Insight 工具包 (ITK) 和 OpenCV 等成熟的开源软件工具包为基础,汇集了先进的计算功能。这些功能描述了在积极的多学科合作研究过程中为满足实际临床需求而开发的专用和通用图像分析算法。CaPTk 的目标受众包括计算科学家和临床专家。对于前者,它提供了 i) 一个高效的图像查看器,能够整合新算法;ii) 一个随时可用的临床相关算法库,允许对多个受试者进行批量处理。对于后者,它通过友好的用户界面,为临床相关研究使用复杂算法提供了便利,消除了大量计算背景的先决条件。CaPTk 的长期目标是提供广泛使用的技术,以便在癌症预测、诊断和预后中使用先进的定量成像分析技术,从而更好地了解癌症发展的生物机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers Optimization of Deep Learning Based Brain Extraction in MRI for Low Resource Environments. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1