Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions.

2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Reviews of Physiology Biochemistry and Pharmacology Pub Date : 2022-01-01 DOI:10.1007/112_2020_30
Jason T Anderson, Kevin M Huang, Maryam B Lustberg, Alex Sparreboom, Shuiying Hu
{"title":"Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions.","authors":"Jason T Anderson,&nbsp;Kevin M Huang,&nbsp;Maryam B Lustberg,&nbsp;Alex Sparreboom,&nbsp;Shuiying Hu","doi":"10.1007/112_2020_30","DOIUrl":null,"url":null,"abstract":"<p><p>Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_30","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2020_30","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化疗药物不良反应中的溶质载体转运体。
溶质载体(SLC)转运蛋白家族的成员负责广泛的内源性化合物和外源性药物的细胞内流。这些蛋白质在胃肠道和排泄器官(如肝脏和肾脏)中高度表达,被认为在控制药物吸收和消除方面具有特别重要的作用。许多相同的转运蛋白也在临床上重要的抗癌药物靶向的各种器官中表达,直接影响细胞对这些药物的敏感性,并间接影响治疗相关的副作用。此外,最近开发了涉及使用转运抑制剂的靶向干预策略,并为降低毒性的联合治疗提供了有希望的主要候选药物。更好地了解转运蛋白介导的靶向和脱靶药物处置之间的复杂相互作用,将有助于指导这些新的治疗策略的进一步发展,以防止药物在毒性相关器官的积累,并提高现有治疗方式的安全性。在本报告中,我们提供了这一快速新兴领域的最新进展,特别强调了紫杉烷类、铂衍生物、核苷类似物和蒽环类的抗癌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Physiology Biochemistry and Pharmacology
Reviews of Physiology Biochemistry and Pharmacology 医学-生化与分子生物学
CiteScore
11.40
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
期刊最新文献
Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases. Endo-Lysosomal Cation Channels and Infectious Diseases. Golgi pH and Ion Homeostasis in Health and Disease. Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1