Paola Cornejo-Páramo, Andrés Lira-Noriega, Ciro Ramírez-Suástegui, Fausto R Méndez-de-la-Cruz, Tamás Székely, Araxi O Urrutia, Diego Cortez
{"title":"Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation.","authors":"Paola Cornejo-Páramo, Andrés Lira-Noriega, Ciro Ramírez-Suástegui, Fausto R Méndez-de-la-Cruz, Tamás Székely, Araxi O Urrutia, Diego Cortez","doi":"10.1186/s12862-020-01671-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vertebrates exhibit diverse sex determination systems and reptiles stand out by having highly variable sex determinations that include temperature-dependent and genotypic sex determination (TSD and GSD, respectively). Theory predicts that populations living in either highly variable or cold climatic conditions should evolve genotypic sex determination to buffer the populations from extreme sex ratios, yet these fundamental predictions have not been tested across a wide range of taxa.</p><p><strong>Results: </strong>Here, we use phylogenetic analyses of 213 reptile species representing 38 families (TSD = 101 species, GSD = 112 species) and climatic data to compare breeding environments between reptiles with GSD versus TSD. We show that GSD and TSD are confronted with the same level of climatic fluctuation during breeding seasons. However, TSD reptiles are significantly associated with warmer climates. We found a strong selection on the breeding season length that minimises exposure to cold and fluctuating climate. Phylogenetic path analyses comparing competing evolutionary hypotheses support that transitions in sex determination systems influenced the ambient temperature at which the species reproduces and nests. In turn, this interaction affects other variables such as the duration of the breeding season and life-history traits.</p><p><strong>Conclusions: </strong>Taken together, our results challenge long-standing hypotheses about the association between sex determination and climate variability. We also show that ambient temperature is important during breeding seasons and it helps explain the effects of sex determination systems on the geographic distribution of extant reptile species.</p>","PeriodicalId":9111,"journal":{"name":"BMC Evolutionary Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12862-020-01671-y","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-020-01671-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 14
Abstract
Background: Vertebrates exhibit diverse sex determination systems and reptiles stand out by having highly variable sex determinations that include temperature-dependent and genotypic sex determination (TSD and GSD, respectively). Theory predicts that populations living in either highly variable or cold climatic conditions should evolve genotypic sex determination to buffer the populations from extreme sex ratios, yet these fundamental predictions have not been tested across a wide range of taxa.
Results: Here, we use phylogenetic analyses of 213 reptile species representing 38 families (TSD = 101 species, GSD = 112 species) and climatic data to compare breeding environments between reptiles with GSD versus TSD. We show that GSD and TSD are confronted with the same level of climatic fluctuation during breeding seasons. However, TSD reptiles are significantly associated with warmer climates. We found a strong selection on the breeding season length that minimises exposure to cold and fluctuating climate. Phylogenetic path analyses comparing competing evolutionary hypotheses support that transitions in sex determination systems influenced the ambient temperature at which the species reproduces and nests. In turn, this interaction affects other variables such as the duration of the breeding season and life-history traits.
Conclusions: Taken together, our results challenge long-standing hypotheses about the association between sex determination and climate variability. We also show that ambient temperature is important during breeding seasons and it helps explain the effects of sex determination systems on the geographic distribution of extant reptile species.
期刊介绍:
BMC Evolutionary Biology is an open access, peer-reviewed journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.