Regularized matrix data clustering and its application to image analysis

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2020-08-16 DOI:10.1111/biom.13354
Xu Gao, Weining Shen, Liwen Zhang, Jianhua Hu, Norbert J. Fortin, Ron D. Frostig, Hernando Ombao
{"title":"Regularized matrix data clustering and its application to image analysis","authors":"Xu Gao,&nbsp;Weining Shen,&nbsp;Liwen Zhang,&nbsp;Jianhua Hu,&nbsp;Norbert J. Fortin,&nbsp;Ron D. Frostig,&nbsp;Hernando Ombao","doi":"10.1111/biom.13354","DOIUrl":null,"url":null,"abstract":"<p>We propose a novel regularized mixture model for clustering matrix-valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix-normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"77 3","pages":"890-902"},"PeriodicalIF":1.4000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/biom.13354","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/biom.13354","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 29

Abstract

We propose a novel regularized mixture model for clustering matrix-valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix-normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正则矩阵数据聚类及其在图像分析中的应用
提出了一种新的正则化混合模型用于矩阵值数据聚类。该方法假设每个聚类具有可分离的协方差结构,并对每个聚类的平均信号施加稀疏性结构(如低秩、空间稀疏性)。我们将该问题表述为具有正则化项的矩阵-正态分布的有限混合模型,然后开发了一种期望最大化型的高效计算算法。理论上,我们证明了所提出的估计量对于各种惩罚函数的选择是强一致的。仿真和两个脑信号研究的应用验证了该方法的优异性能,包括优于竞争对手的预测精度和解决方案的科学可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Gaussian processes for time series with lead-lag effects with applications to biology data. Weighted Q-learning for optimal dynamic treatment regimes with nonignorable missing covariates. Causal inference with cross-temporal design. Distributed model building and recursive integration for big spatial data modeling. Robust Bayesian graphical regression models for assessing tumor heterogeneity in proteomic networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1