{"title":"Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.","authors":"Salim Bouzebda, Sultana Didi","doi":"10.1007/s13163-020-00368-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, we consider the nonparametric regression model with random design based on <math> <msub><mrow><mo>(</mo> <msub><mi>X</mi> <mi>t</mi></msub> <mo>,</mo> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>)</mo></mrow> <mrow><mi>t</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> a <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> </mrow> </math> -valued strictly stationary and ergodic continuous time process, where the regression function is given by <math><mrow><mi>m</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> <mo>=</mo> <mi>E</mi> <mo>(</mo> <mi>ψ</mi> <mo>(</mo> <mi>Y</mi> <mo>)</mo> <mo>∣</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo></mrow> </math> , for a measurable function <math><mrow><mi>ψ</mi> <mo>:</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> <mo>→</mo> <mi>R</mi></mrow> </math> . We focus on the estimation of the location <math><mrow><mi>Θ</mi></mrow> </math> (mode) of a unique maximum of <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> by the location <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> of a maximum of the Nadaraya-Watson kernel estimator <math> <mrow> <msub><mover><mi>m</mi> <mo>^</mo></mover> <mi>T</mi></msub> <mrow><mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </mrow> </math> for the curve <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> . Within this context, we obtain the consistency with rate and the asymptotic normality results for <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> under mild local smoothness assumptions on <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> and the design density <math><mrow><mi>f</mi> <mo>(</mo> <mo>·</mo> <mo>)</mo></mrow> </math> of <math><mi>X</mi></math> . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13163-020-00368-6","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-020-00368-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
In the present paper, we consider the nonparametric regression model with random design based on a -valued strictly stationary and ergodic continuous time process, where the regression function is given by , for a measurable function . We focus on the estimation of the location (mode) of a unique maximum of by the location of a maximum of the Nadaraya-Watson kernel estimator for the curve . Within this context, we obtain the consistency with rate and the asymptotic normality results for under mild local smoothness assumptions on and the design density of . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.