{"title":"Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.","authors":"Salim Bouzebda, Sultana Didi","doi":"10.1007/s13163-020-00368-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, we consider the nonparametric regression model with random design based on <math> <msub><mrow><mo>(</mo> <msub><mi>X</mi> <mi>t</mi></msub> <mo>,</mo> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>)</mo></mrow> <mrow><mi>t</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> a <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> </mrow> </math> -valued strictly stationary and ergodic continuous time process, where the regression function is given by <math><mrow><mi>m</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> <mo>=</mo> <mi>E</mi> <mo>(</mo> <mi>ψ</mi> <mo>(</mo> <mi>Y</mi> <mo>)</mo> <mo>∣</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo></mrow> </math> , for a measurable function <math><mrow><mi>ψ</mi> <mo>:</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> <mo>→</mo> <mi>R</mi></mrow> </math> . We focus on the estimation of the location <math><mrow><mi>Θ</mi></mrow> </math> (mode) of a unique maximum of <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> by the location <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> of a maximum of the Nadaraya-Watson kernel estimator <math> <mrow> <msub><mover><mi>m</mi> <mo>^</mo></mover> <mi>T</mi></msub> <mrow><mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </mrow> </math> for the curve <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> . Within this context, we obtain the consistency with rate and the asymptotic normality results for <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> under mild local smoothness assumptions on <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> and the design density <math><mrow><mi>f</mi> <mo>(</mo> <mo>·</mo> <mo>)</mo></mrow> </math> of <math><mi>X</mi></math> . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.</p>","PeriodicalId":49605,"journal":{"name":"Revista Matematica Complutense","volume":"34 3","pages":"811-852"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13163-020-00368-6","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Complutense","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-020-00368-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
In the present paper, we consider the nonparametric regression model with random design based on a -valued strictly stationary and ergodic continuous time process, where the regression function is given by , for a measurable function . We focus on the estimation of the location (mode) of a unique maximum of by the location of a maximum of the Nadaraya-Watson kernel estimator for the curve . Within this context, we obtain the consistency with rate and the asymptotic normality results for under mild local smoothness assumptions on and the design density of . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.
期刊介绍:
Revista Matemática Complutense is an international research journal supported by the School of Mathematics at Complutense University in Madrid. It publishes high quality research and survey articles across pure and applied mathematics. Fields of interests include: analysis, differential equations and applications, geometry, topology, algebra, statistics, computer sciences and astronomy. This broad interest is reflected in our interdisciplinary editorial board which is comprised of over 30 internationally esteemed researchers in diverse areas.
The Editorial Board of Revista Matemática Complutense organizes the “Santaló Lecture”, a yearly event where a distinguished mathematician is invited to present a lecture at Complutense University and contribute to the journal. Past lecturers include: Charles T.C. Wall, Jack K. Hale, Hans Triebel, Marcelo Viana, Narayanswamy Balakrishnan, Nigel Kalton, Alfio Quarteroni, David E. Edmunds, Giuseppe Buttazzo, Juan L. Vázquez, Eduard Feireisl, Nigel Hitchin, Lajos Horváth, Hélène Esnault, Luigi Ambrosio, Ignacio Cirac and Bernd Sturmfels. The Santaló Lecturer for 2019 will be Noel Cressie from National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong.