Evaluation of Imaging Windows for Tau PET Imaging Using 18F-PI2620 in Cognitively Normal Individuals, Mild Cognitive Impairment, and Alzheimer's Disease Patients.
{"title":"Evaluation of Imaging Windows for Tau PET Imaging Using <sup>18</sup>F-PI2620 in Cognitively Normal Individuals, Mild Cognitive Impairment, and Alzheimer's Disease Patients.","authors":"Chanisa Chotipanich, Monchaya Nivorn, Anchisa Kunawudhi, Chetsadaporn Promteangtrong, Natphimol Boonkawin, Attapon Jantarato","doi":"10.1177/1536012120947582","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study aimed to evaluate the appropriate uptake-timing in cognitively normal individuals, mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients, using <sup>18</sup>F-PI 2620 dynamic PET acquisition.</p><p><strong>Methods: </strong>Thirty-four MCI patients, 6 AD patients, and 24 cognitively normal individuals were enrolled in this study. A dynamic <sup>18</sup>F-PI 2620 PET study was conducted at 30-75 minutes post-injection in these groups. Co-registration was applied between the dynamic acquisition PET and T1-weighted MRI to delineate various cortical regions. The standardized uptake value ratio (SUVR) was used for quantitative analysis. P-mod software with the Automated Anatomical Labeling (AAL)-merged atlas was employed to generate automatic volumes of interest for 11 brain regions.</p><p><strong>Results: </strong>The curves in most brain regions presented an average SUVR stability at 30-40 minutes post-injection in each group. The appropriate uptake-timing interval of <sup>18</sup>F-PI 2620 was 30-75 minutes post injection for AD group and 30-40 minutes post injection for both cognitively normal individuals and MCI groups.</p><p><strong>Conclusion: </strong>Short uptake time around 30-40 minutes post-injection would be more comfortable and convenient for all patients, especially in those with dementia who were unable to stay motionless for long periods of scanning time in the scanner.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":"19 ","pages":"1536012120947582"},"PeriodicalIF":2.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1536012120947582","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1536012120947582","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 9
Abstract
Background: The study aimed to evaluate the appropriate uptake-timing in cognitively normal individuals, mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients, using 18F-PI 2620 dynamic PET acquisition.
Methods: Thirty-four MCI patients, 6 AD patients, and 24 cognitively normal individuals were enrolled in this study. A dynamic 18F-PI 2620 PET study was conducted at 30-75 minutes post-injection in these groups. Co-registration was applied between the dynamic acquisition PET and T1-weighted MRI to delineate various cortical regions. The standardized uptake value ratio (SUVR) was used for quantitative analysis. P-mod software with the Automated Anatomical Labeling (AAL)-merged atlas was employed to generate automatic volumes of interest for 11 brain regions.
Results: The curves in most brain regions presented an average SUVR stability at 30-40 minutes post-injection in each group. The appropriate uptake-timing interval of 18F-PI 2620 was 30-75 minutes post injection for AD group and 30-40 minutes post injection for both cognitively normal individuals and MCI groups.
Conclusion: Short uptake time around 30-40 minutes post-injection would be more comfortable and convenient for all patients, especially in those with dementia who were unable to stay motionless for long periods of scanning time in the scanner.
Molecular ImagingBiochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍:
Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.