Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil.

IF 3.7 1区 物理与天体物理 Q2 PHYSICS, APPLIED Superconductor Science & Technology Pub Date : 2013-01-01 Epub Date: 2013-01-28 DOI:10.1088/0953-2048/26/3/035012
Xudong Wang, Seungyong Hahn, Youngjae Kim, Juan Bascuñán, John Voccio, Haigun Lee, Yukikazu Iwasa
{"title":"Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil.","authors":"Xudong Wang, Seungyong Hahn, Youngjae Kim, Juan Bascuñán, John Voccio, Haigun Lee, Yukikazu Iwasa","doi":"10.1088/0953-2048/26/3/035012","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents experimental and analytical studies on the characteristic resistance of NI (no-insulation) ReBCO pancake coils, which are used in an equivalent circuit model to characterize 'radial as well as spiral' current paths within the NI coils. We identified turn-to-turn contact resistance as a major source of the characteristic resistance of an NI coil. In order to verify this, three single pancake NI HTS coils-60, 40, 20 turns-were fabricated with their winding tension carefully maintained constant. A sudden discharge test was performed on each coil to obtain its characteristic resistance, and the relation between the turn-to-turn contact and the characteristic resistance was investigated. Based on the characteristic resistance and the <i>n</i>-value model, an equivalent circuit model was proposed to characterize the time-varying response of the NI coils. Charging tests were performed on the three test coils and the experimental results were compared with the simulated ones to validate the proposed approach with the equivalent circuit model.</p>","PeriodicalId":54440,"journal":{"name":"Superconductor Science & Technology","volume":"26 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453556/pdf/nihms-1038764.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science & Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0953-2048/26/3/035012","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents experimental and analytical studies on the characteristic resistance of NI (no-insulation) ReBCO pancake coils, which are used in an equivalent circuit model to characterize 'radial as well as spiral' current paths within the NI coils. We identified turn-to-turn contact resistance as a major source of the characteristic resistance of an NI coil. In order to verify this, three single pancake NI HTS coils-60, 40, 20 turns-were fabricated with their winding tension carefully maintained constant. A sudden discharge test was performed on each coil to obtain its characteristic resistance, and the relation between the turn-to-turn contact and the characteristic resistance was investigated. Based on the characteristic resistance and the n-value model, an equivalent circuit model was proposed to characterize the time-varying response of the NI coils. Charging tests were performed on the three test coils and the experimental results were compared with the simulated ones to validate the proposed approach with the equivalent circuit model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无绝缘 ReBCO 薄饼线圈等效电路模型的匝间接触特性。
本文介绍了对 NI(无绝缘)ReBCO 薄饼线圈特性阻抗的实验和分析研究,并将其用于等效电路模型,以确定 NI 线圈内 "径向和螺旋 "电流路径的特性。我们发现匝间接触电阻是 NI 线圈特性阻抗的主要来源。为了验证这一点,我们制作了三个单薄饼 NI HTS 线圈--60、40 和 20 匝,并小心保持其绕组张力恒定。对每个线圈都进行了突然放电测试,以获得其特性阻抗,并研究了匝间接触与特性阻抗之间的关系。根据特征电阻和 n 值模型,提出了一个等效电路模型来描述 NI 线圈的时变响应。对三个测试线圈进行了充电测试,并将实验结果与模拟结果进行了比较,以验证所提出的等效电路模型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Superconductor Science & Technology
Superconductor Science & Technology 物理-物理:凝聚态物理
CiteScore
6.80
自引率
27.80%
发文量
227
审稿时长
3 months
期刊介绍: Superconductor Science and Technology is a multidisciplinary journal for papers on all aspects of superconductivity. The coverage includes theories of superconductivity, the basic physics of superconductors, the relation of microstructure and growth to superconducting properties, the theory of novel devices, and the fabrication and properties of thin films and devices. It also encompasses the manufacture and properties of conductors, and their application in the construction of magnets and heavy current machines, together with enabling technology.
期刊最新文献
A surface-shunting method for the prevention of a fault-mode-induced quench in high-field no-insulation REBCO magnets. Design and manufacture of an ultra-compact, 1.5 T class, controlled-contact resistance, REBCO, brain imaging MRI magnet. Construction and test result of an all-REBCO conduction-cooled 23.5 T magnet prototype towards a benchtop 1 GHz NMR spectroscopy. Enhanced higher temperature irreversibility field and critical current density in MgB2 wires with Dy2O3 additions. High performance, advanced-internal-magnesium-infiltration (AIMI) MgB2 wires processed using a vapor-solid reaction route.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1