Evolutionary Genomics of High Fecundity.

IF 8.7 1区 生物学 Q1 GENETICS & HEREDITY Annual review of genetics Pub Date : 2020-11-23 Epub Date: 2020-09-01 DOI:10.1146/annurev-genet-021920-095932
Bjarki Eldon
{"title":"Evolutionary Genomics of High Fecundity.","authors":"Bjarki Eldon","doi":"10.1146/annurev-genet-021920-095932","DOIUrl":null,"url":null,"abstract":"<p><p>Natural highly fecund populations abound. These range from viruses to gadids. Many highly fecund populations are economically important. Highly fecund populations provide an important contrast to the low-fecundity organisms that have traditionally been applied in evolutionary studies. A key question regarding high fecundity is whether large numbers of offspring are produced on a regular basis, by few individuals each time, in a sweepstakes mode of reproduction. Such reproduction characteristics are not incorporated into the classical Wright-Fisher model, the standard reference model of population genetics, or similar types of models, in which each individual can produce only small numbers of offspring relative to the population size. The expected genomic footprints of population genetic models of sweepstakes reproduction are very different from those of the Wright-Fisher model. A key, immediate issue involves identifying the footprints of sweepstakes reproduction in genomic data. Whole-genome sequencing data can be used to distinguish the patterns made by sweepstakes reproduction from the patterns made by population growth in a population evolving according to the Wright-Fisher model (or similar models). If the hypothesis of sweepstakes reproduction cannot be rejected, then models of sweepstakes reproduction and associated multiple-merger coalescents will become at least as relevant as the Wright-Fisher model (or similar models) and the Kingman coalescent, the cornerstones of mathematical population genetics, in further discussions of evolutionary genomics of highly fecund populations.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"54 ","pages":"213-236"},"PeriodicalIF":8.7000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genet-021920-095932","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-021920-095932","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 9

Abstract

Natural highly fecund populations abound. These range from viruses to gadids. Many highly fecund populations are economically important. Highly fecund populations provide an important contrast to the low-fecundity organisms that have traditionally been applied in evolutionary studies. A key question regarding high fecundity is whether large numbers of offspring are produced on a regular basis, by few individuals each time, in a sweepstakes mode of reproduction. Such reproduction characteristics are not incorporated into the classical Wright-Fisher model, the standard reference model of population genetics, or similar types of models, in which each individual can produce only small numbers of offspring relative to the population size. The expected genomic footprints of population genetic models of sweepstakes reproduction are very different from those of the Wright-Fisher model. A key, immediate issue involves identifying the footprints of sweepstakes reproduction in genomic data. Whole-genome sequencing data can be used to distinguish the patterns made by sweepstakes reproduction from the patterns made by population growth in a population evolving according to the Wright-Fisher model (or similar models). If the hypothesis of sweepstakes reproduction cannot be rejected, then models of sweepstakes reproduction and associated multiple-merger coalescents will become at least as relevant as the Wright-Fisher model (or similar models) and the Kingman coalescent, the cornerstones of mathematical population genetics, in further discussions of evolutionary genomics of highly fecund populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高繁殖力进化基因组学。
自然的高产种群大量存在。这些范围从病毒到染色体。许多高度富裕的人口在经济上很重要。高繁殖力的种群与传统上应用于进化研究的低繁殖力生物形成了重要的对比。关于高繁殖力的一个关键问题是,是否以一种抽奖式的繁殖模式,每次由少数个体定期产生大量后代。这种繁殖特征并没有被纳入经典的Wright-Fisher模型、群体遗传学的标准参考模型或类似类型的模型中,在这些模型中,每个个体只能产生相对于群体规模的少量后代。抽奖繁殖的群体遗传模型的预期基因组足迹与Wright-Fisher模型非常不同。一个关键的、迫在眉睫的问题涉及在基因组数据中识别抽奖繁殖的足迹。全基因组测序数据可以用来区分抽奖繁殖模式和根据Wright-Fisher模型(或类似模型)进化的种群增长模式。如果抽彩繁殖的假设不能被拒绝,那么抽彩繁殖模型和相关的多重合并聚结将至少与莱特-费舍尔模型(或类似模型)和金曼聚结一样重要,它们是数学种群遗传学的基石,在进一步讨论高产种群的进化基因组学中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of genetics
Annual review of genetics 生物-遗传学
CiteScore
18.30
自引率
0.90%
发文量
17
期刊介绍: The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.
期刊最新文献
Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Apoptotic and Nonapoptotic Cell Death in Caenorhabditis elegans Development. Plant Thermosensors. Recombination Rate Variation in Social Insects: An Adaptive Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1