Nina Verstraete, Giuseppe Jurman, Giulia Bertagnolli, Arsham Ghavasieh, Vera Pancaldi, Manlio De Domenico
{"title":"CovMulNet19, Integrating Proteins, Diseases, Drugs, and Symptoms: A Network Medicine Approach to COVID-19.","authors":"Nina Verstraete, Giuseppe Jurman, Giulia Bertagnolli, Arsham Ghavasieh, Vera Pancaldi, Manlio De Domenico","doi":"10.1089/nsm.2020.0011","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> We introduce in this study CovMulNet19, a comprehensive COVID-19 network containing all available known interactions involving SARS-CoV-2 proteins, interacting-human proteins, diseases and symptoms that are related to these human proteins, and compounds that can potentially target them. <b>Materials and Methods:</b> Extensive network analysis methods, based on a bootstrap approach, allow us to prioritize a list of diseases that display a high similarity to COVID-19 and a list of drugs that could potentially be beneficial to treat patients. As a key feature of CovMulNet19, the inclusion of symptoms allows a deeper characterization of the disease pathology, representing a useful proxy for COVID-19-related molecular processes. <b>Results:</b> We recapitulate many of the known symptoms of the disease and we find the most similar diseases to COVID-19 reflect conditions that are risk factors in patients. In particular, the comparison between CovMulNet19 and randomized networks recovers many of the known associated comorbidities that are important risk factors for COVID-19 patients, through identified similarities with intestinal, hepatic, and neurological diseases as well as with respiratory conditions, in line with reported comorbidities. <b>Conclusion:</b> CovMulNet19 can be suitably used for network medicine analysis, as a valuable tool for exploring drug repurposing while accounting for the intervening multidimensional factors, from molecular interactions to symptoms.</p>","PeriodicalId":74262,"journal":{"name":"Network and systems medicine","volume":" ","pages":"130-141"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network and systems medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/nsm.2020.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: We introduce in this study CovMulNet19, a comprehensive COVID-19 network containing all available known interactions involving SARS-CoV-2 proteins, interacting-human proteins, diseases and symptoms that are related to these human proteins, and compounds that can potentially target them. Materials and Methods: Extensive network analysis methods, based on a bootstrap approach, allow us to prioritize a list of diseases that display a high similarity to COVID-19 and a list of drugs that could potentially be beneficial to treat patients. As a key feature of CovMulNet19, the inclusion of symptoms allows a deeper characterization of the disease pathology, representing a useful proxy for COVID-19-related molecular processes. Results: We recapitulate many of the known symptoms of the disease and we find the most similar diseases to COVID-19 reflect conditions that are risk factors in patients. In particular, the comparison between CovMulNet19 and randomized networks recovers many of the known associated comorbidities that are important risk factors for COVID-19 patients, through identified similarities with intestinal, hepatic, and neurological diseases as well as with respiratory conditions, in line with reported comorbidities. Conclusion: CovMulNet19 can be suitably used for network medicine analysis, as a valuable tool for exploring drug repurposing while accounting for the intervening multidimensional factors, from molecular interactions to symptoms.