Nitish Maharjan, Abeer Alsadoon, P W C Prasad, Salma Abdullah, Tarik A Rashid
{"title":"A Novel Visualization System of Using Augmented Reality in Knee Replacement Surgery: Enhanced Bidirectional Maximum CorrentropyAlgorithm.","authors":"Nitish Maharjan, Abeer Alsadoon, P W C Prasad, Salma Abdullah, Tarik A Rashid","doi":"10.1002/rcs.2154","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Image registration and alignment are the main limitations of augmented reality-based knee replacement surgery. This research aims to decrease the registration error, eliminate outcomes that are trapped in local minima to improve the alignment problems, handle the occlusion and maximize the overlapping parts.</p><p><strong>Methodology: </strong>markerless image registration method was used for Augmented reality-based knee replacement surgery to guide and visualize the surgical operation. While weight least square algorithm was used to enhance stereo camera-based tracking by filling border occlusion in right to left direction and non-border occlusion from left to right direction.</p><p><strong>Results: </strong>This study has improved video precision to 0.57 mm ∼ 0.61 mm alignment error. Furthermore, with the use of bidirectional points, i.e. Forwards and backwards directional cloud point, the iteration on image registration was decreased. This has led to improved the processing time as well. The processing time of video frames was improved to 7.4 ∼11.74 fps.</p><p><strong>Conclusions: </strong>It seems clear that this proposed system has focused on overcoming the misalignment difficulty caused by movement of patient and enhancing the AR visualization during knee replacement surgery. The proposed system was reliable and favourable which helps in eliminating alignment error by ascertaining the optimal rigid transformation between two cloud points and removing the outliers and non-Gaussian noise. The proposed augmented reality system helps in accurate visualization and navigation of anatomy of knee such as femur, tibia, cartilage, blood vessels, etc. This article is protected by copyright. All rights reserved.</p>","PeriodicalId":75029,"journal":{"name":"The international journal of medical robotics + computer assisted surgery : MRCAS","volume":" ","pages":"e2154"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of medical robotics + computer assisted surgery : MRCAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rcs.2154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim: Image registration and alignment are the main limitations of augmented reality-based knee replacement surgery. This research aims to decrease the registration error, eliminate outcomes that are trapped in local minima to improve the alignment problems, handle the occlusion and maximize the overlapping parts.
Methodology: markerless image registration method was used for Augmented reality-based knee replacement surgery to guide and visualize the surgical operation. While weight least square algorithm was used to enhance stereo camera-based tracking by filling border occlusion in right to left direction and non-border occlusion from left to right direction.
Results: This study has improved video precision to 0.57 mm ∼ 0.61 mm alignment error. Furthermore, with the use of bidirectional points, i.e. Forwards and backwards directional cloud point, the iteration on image registration was decreased. This has led to improved the processing time as well. The processing time of video frames was improved to 7.4 ∼11.74 fps.
Conclusions: It seems clear that this proposed system has focused on overcoming the misalignment difficulty caused by movement of patient and enhancing the AR visualization during knee replacement surgery. The proposed system was reliable and favourable which helps in eliminating alignment error by ascertaining the optimal rigid transformation between two cloud points and removing the outliers and non-Gaussian noise. The proposed augmented reality system helps in accurate visualization and navigation of anatomy of knee such as femur, tibia, cartilage, blood vessels, etc. This article is protected by copyright. All rights reserved.
背景和目的:图像配准和对齐是基于增强现实技术的膝关节置换手术的主要限制因素。本研究旨在减少配准误差,消除陷入局部极小值的结果,以改善配准问题,处理闭塞并最大限度地增加重叠部分。方法:将无标记图像配准方法用于基于增强现实技术的膝关节置换手术,为手术操作提供指导和可视化,同时使用加权最小平方算法,通过填补从右向左方向的边界闭塞和从左向右方向的非边界闭塞,增强基于立体摄像机的跟踪能力:结果:这项研究将视频精度提高到了 0.57 mm ∼ 0.61 mm 的对齐误差。此外,由于使用了双向点,即前进和后退方向的云点,减少了图像配准的迭代次数。这也缩短了处理时间。视频帧的处理时间提高到 7.4 ∼ 11.74 fps:很明显,该系统主要克服了膝关节置换手术过程中因患者移动而造成的错位困难,并增强了 AR 可视化效果。所提议的系统是可靠和有利的,它通过确定两个云点之间的最佳刚性变换以及消除异常值和非高斯噪声,有助于消除对齐误差。拟议的增强现实系统有助于对股骨、胫骨、软骨、血管等膝关节解剖结构进行精确的可视化和导航。本文受版权保护。保留所有权利。