An association between mitochondria and microglia effector function. What do we think we know?

Neuroimmunology and Neuroinflammation Pub Date : 2020-01-01 Epub Date: 2020-06-16 DOI:10.20517/2347-8659.2020.07
G Jean Harry, Gabrielle Childers, Sahana Giridharan, Irisyunuel Lopez Hernandes
{"title":"An association between mitochondria and microglia effector function. What do we think we know?","authors":"G Jean Harry, Gabrielle Childers, Sahana Giridharan, Irisyunuel Lopez Hernandes","doi":"10.20517/2347-8659.2020.07","DOIUrl":null,"url":null,"abstract":"<p><p>While resident innate immune cells of the central nervous system, the microglia, represent a cell population unique in origin, microenvironment, and longevity, they assume many properties displayed by peripheral macrophages. One prominent shared property is the ability to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS) upon activation by the pro-inflammatory stimuli lipopolysaccharide. This shift serves to meet specific cellular demands and allows for cell survival, similar to the Warburg effect demonstrated in cancer cells. In contrast, normal survelliance phenotype or stimulation to a non-proinflammatory phenotype relies primarily on OXPHOS and fatty acid oxidation. Thus, mitochondria appear to function as a pivotal signaling platform linking energy metabolism and macrophage polarization upon activation. These unique shifts in cell bioenergetics in response to different stimuli are essential for proper effector responses at sites of infection, inflammation, or injury. Here we present a summary of recent developments as to how these dynamics characterized in peripheral macrophages are displayed in microglia. The new insights provided by an increased understanding of metabolic reprogramming in macrophages may allow for translation to the CNS and a better understanding of microglia heterogeneity, regulation, and function.</p>","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489447/pdf/nihms-1608808.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunology and Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/2347-8659.2020.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While resident innate immune cells of the central nervous system, the microglia, represent a cell population unique in origin, microenvironment, and longevity, they assume many properties displayed by peripheral macrophages. One prominent shared property is the ability to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS) upon activation by the pro-inflammatory stimuli lipopolysaccharide. This shift serves to meet specific cellular demands and allows for cell survival, similar to the Warburg effect demonstrated in cancer cells. In contrast, normal survelliance phenotype or stimulation to a non-proinflammatory phenotype relies primarily on OXPHOS and fatty acid oxidation. Thus, mitochondria appear to function as a pivotal signaling platform linking energy metabolism and macrophage polarization upon activation. These unique shifts in cell bioenergetics in response to different stimuli are essential for proper effector responses at sites of infection, inflammation, or injury. Here we present a summary of recent developments as to how these dynamics characterized in peripheral macrophages are displayed in microglia. The new insights provided by an increased understanding of metabolic reprogramming in macrophages may allow for translation to the CNS and a better understanding of microglia heterogeneity, regulation, and function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体与小胶质细胞效应功能之间的联系。我们知道些什么?
虽然中枢神经系统的常住先天性免疫细胞--小胶质细胞--在起源、微环境和寿命方面是一个独特的细胞群,但它们具有外周巨噬细胞的许多特性。一个显著的共同特性是,在促炎性刺激脂多糖的激活下,它们能够进行新陈代谢转换,转向糖酵解,而不是氧化磷酸化(OXPHOS)。这种转变是为了满足特定的细胞需求,使细胞得以存活,类似于癌细胞中的沃伯格效应。与此相反,正常的增殖表型或受刺激后的非促炎表型主要依赖于 OXPHOS 和脂肪酸氧化。因此,线粒体似乎是连接能量代谢和巨噬细胞激活后极化的关键信号平台。细胞生物能在应对不同刺激时发生的这些独特变化,对于在感染、炎症或损伤部位做出适当的效应反应至关重要。在此,我们总结了小胶质细胞如何显示外周巨噬细胞的这些动态特征的最新进展。通过进一步了解巨噬细胞中的代谢重编程,我们可以获得新的见解,从而将其应用于中枢神经系统,并更好地了解小胶质细胞的异质性、调节和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
348
期刊最新文献
Acknowledgment to Reviewers Neurological connections and endogenous biochemistry - potentially useful in electronic-nose diagnostics for coronavirus diseases Use of intravenous immunoglobulin to successfully treat COVID-19 associated encephalitis Viruses and neuroinflammation in multiple sclerosis Pathways linking Alzheimer’s disease risk genes expressed highly in microglia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1