The microbiology of red brines.

2区 生物学 Q1 Immunology and Microbiology Advances in applied microbiology Pub Date : 2020-01-01 Epub Date: 2020-08-17 DOI:10.1016/bs.aambs.2020.07.003
Aharon Oren
{"title":"The microbiology of red brines.","authors":"Aharon Oren","doi":"10.1016/bs.aambs.2020.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×10<sup>7</sup> cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"113 ","pages":"57-110"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.aambs.2020.07.003","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2020.07.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 20

Abstract

The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红盐水的微生物学。
总盐浓度超过30%的天然盐湖的盐水往往被密集的嗜盐微生物群落染成红色。这种红色盐水存在于犹他州大盐湖的北岸,非洲大裂谷的碱性高盐湖泊,以及沿海和内陆盐沼的结晶池中,在那里盐是由海水蒸发或其他咸水来源产生的。据报道,死海过去也出现过红花。不同类型的色素微生物可能有助于卤水的着色。其中最重要的是盐细菌纲的嗜盐古菌,它含有类胡萝卜素类的细菌红紫红质和其他视网膜色素;富含β-胡萝卜素的单细胞绿藻属Dunaliella和含有类胡萝卜素类盐黄质和视网膜蛋白黄紫红质的Salinibacter属细菌(Rhodothermia类)。红盐水中原核生物的密度通常超过2-3×107细胞/mL。本文综述了红盐水的生物群、生物之间的相互作用、红色嗜盐微生物在盐生产过程中的可能作用,以及栖息在红盐水中的不同类型的嗜盐微生物产生的类胡萝卜素和视网膜蛋白的一些应用方面的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in applied microbiology
Advances in applied microbiology 生物-生物工程与应用微生物
CiteScore
8.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive. Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
期刊最新文献
Stress response and adaptation mechanisms in Kluyveromyces marxianus. Selenium bioactive compounds produced by beneficial microbes. Development and applications of genome-scale metabolic network models. The infant gut microbiota as the cornerstone for future gastrointestinal health. Effects of gut bacteria and their metabolites on gut health of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1