Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos.

IF 8.7 1区 生物学 Q1 GENETICS & HEREDITY Annual review of genetics Pub Date : 2020-11-23 Epub Date: 2020-08-31 DOI:10.1146/annurev-genet-021920-110200
Jonathan Fiorentino, Maria-Elena Torres-Padilla, Antonio Scialdone
{"title":"Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos.","authors":"Jonathan Fiorentino,&nbsp;Maria-Elena Torres-Padilla,&nbsp;Antonio Scialdone","doi":"10.1146/annurev-genet-021920-110200","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"54 ","pages":"167-187"},"PeriodicalIF":8.7000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genet-021920-110200","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-021920-110200","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 12

Abstract

Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠胚胎单细胞异质性和命运决定的测量和建模。
细胞异质性是任何生命系统的特性;然而,它与细胞命运决定的关系仍然是一个悬而未决的问题。最近的技术进步使得有价值的见解,特别是在复杂的系统,如小鼠胚胎。在这篇综述中,我们讨论了在小鼠发育过程中不同水平的细胞异质性的最新研究,从双细胞阶段到原肠胚形成。除了关键的实验发现,我们回顾了数学建模方法,帮助研究人员解释这些发现。解开细胞命运决定中异质性的作用可能依赖于实验、大规模组学数据和数学建模的精细整合,并辅以合成胚胎和类胃原体作为有前途的体外模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of genetics
Annual review of genetics 生物-遗传学
CiteScore
18.30
自引率
0.90%
发文量
17
期刊介绍: The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.
期刊最新文献
The Prokaryotic Roots of Eukaryotic Immune Systems The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution. Integrating the Study of Polyploidy Across Organisms, Tissues, and Disease. Placental Evolution: Innovating how to Feed Babies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1