Tessa Maroni, Brian Dawson, Grant Landers, Louise Naylor, Karen Wallman
{"title":"Hand and torso pre-cooling does not enhance subsequent high-intensity cycling or cognitive performance in heat.","authors":"Tessa Maroni, Brian Dawson, Grant Landers, Louise Naylor, Karen Wallman","doi":"10.1080/23328940.2019.1631731","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to compare the separate and combined effects of two practical cooling methods (hand and torso) used prior to exercise on subsequent high-intensity cycling performance in heat. Ten trained male cyclists (V̇O<sub>2</sub>peak: 65.7 ± 10.7 ml.kg<sup>-1</sup>.min<sup>-1</sup>) performed four experimental trials (randomised within-subjects design) involving 30-min of pre-cooling (20-min seated; PRE-COOL, 10 min warm-up; PRE-COOL+WUP), while using a: (1) hand-cooling glove (CG); (2) cooling jacket (CJ); (3) both CG and CJ (CG+J); or (4) no-cooling (NC) control, followed by a cycling race simulation protocol (all performed in 35.0 ± 0.6°C and 56.6 ± 4.5% RH). During the 30-min of pre-cooling, no reductions in core (Tc) or mean skin temperature (Tsk) occurred; however, Tsk remained lower in the CJ and CG+J trials compared to NC and CG (p = 0.002-0.040, <i>d</i>= 0.55-1.01). Thermal sensation ratings also indicated that participants felt \"hotter\" during NC compared to all other trials during both PRE-COOL and PRE-COOL+WUP (p = 0.001-0.015, <i>d</i>= 1.0-2.19), plus the early stages of exercise (sets 1-2; p = 0.005-0.050, <i>d</i>= 0.56-1.22). Following cooling, no differences were found for absolute Tc and Tsk responses between trials over the entire exercise protocol (p > 0.05). Exercise and cognitive (working memory) performance also did not differ between trials (p = 0.843); however, cognitive performance improved over time in all trials (p < 0.001). In summary, pre-cooling (20-min seated and 10-min warm-up) in heat did not improve subsequent high-intensity cycling performance, cognitive responses and associated thermoregulatory strain (Tc and Tsk) compared to control.</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":" ","pages":"165-177"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518759/pdf/KTMP_7_1631731.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2019.1631731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to compare the separate and combined effects of two practical cooling methods (hand and torso) used prior to exercise on subsequent high-intensity cycling performance in heat. Ten trained male cyclists (V̇O2peak: 65.7 ± 10.7 ml.kg-1.min-1) performed four experimental trials (randomised within-subjects design) involving 30-min of pre-cooling (20-min seated; PRE-COOL, 10 min warm-up; PRE-COOL+WUP), while using a: (1) hand-cooling glove (CG); (2) cooling jacket (CJ); (3) both CG and CJ (CG+J); or (4) no-cooling (NC) control, followed by a cycling race simulation protocol (all performed in 35.0 ± 0.6°C and 56.6 ± 4.5% RH). During the 30-min of pre-cooling, no reductions in core (Tc) or mean skin temperature (Tsk) occurred; however, Tsk remained lower in the CJ and CG+J trials compared to NC and CG (p = 0.002-0.040, d= 0.55-1.01). Thermal sensation ratings also indicated that participants felt "hotter" during NC compared to all other trials during both PRE-COOL and PRE-COOL+WUP (p = 0.001-0.015, d= 1.0-2.19), plus the early stages of exercise (sets 1-2; p = 0.005-0.050, d= 0.56-1.22). Following cooling, no differences were found for absolute Tc and Tsk responses between trials over the entire exercise protocol (p > 0.05). Exercise and cognitive (working memory) performance also did not differ between trials (p = 0.843); however, cognitive performance improved over time in all trials (p < 0.001). In summary, pre-cooling (20-min seated and 10-min warm-up) in heat did not improve subsequent high-intensity cycling performance, cognitive responses and associated thermoregulatory strain (Tc and Tsk) compared to control.