An Ultrasound Image Enhancement Method Using Neutrosophic Similarity Score.

IF 2.5 4区 医学 Q1 ACOUSTICS Ultrasonic Imaging Pub Date : 2020-11-01 DOI:10.1177/0161734620961005
Puja Bharti, Deepti Mittal
{"title":"An Ultrasound Image Enhancement Method Using Neutrosophic Similarity Score.","authors":"Puja Bharti,&nbsp;Deepti Mittal","doi":"10.1177/0161734620961005","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound images, having low contrast and noise, adversely impact in the detection of abnormalities. In view of this, an enhancement method is proposed in this work to reduce noise and improve contrast of ultrasound images. The proposed method is based on scaling with neutrosophic similarity score (NSS), where an image is represented in the neutrosophic domain through three membership subsets <i>T, I</i>, and <i>F</i> denoting the degree of truth, indeterminacy, and falseness, respectively. The NSS measures the belonging degree of pixel to the texture using multi-criteria that is based on intensity, local mean intensity and edge detection. Then, NSS is utilized to extract the enhanced coefficient and this enhanced coefficient is applied to scale the input image. This scaling reflects contrast improvement and denoising effect on ultrasound images. The performance of proposed enhancement method is evaluated on clinical ultrasound images, using both subjective and objective image quality measures. In subjective evaluation, with proposed method, overall best score of 4.3 was obtained and that was 44% higher than the score of original images. These results were also supported by objective measures. The results demonstrated that the proposed method outperformed the other methods in terms of mean brightness preservation, edge preservation, structural similarity, and human perception-based image quality assessment. Thus, the proposed method can be used in computer-aided diagnosis systems and to visually assist radiologists in their interactive-decision-making task.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":"42 6","pages":"271-283"},"PeriodicalIF":2.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0161734620961005","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0161734620961005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 7

Abstract

Ultrasound images, having low contrast and noise, adversely impact in the detection of abnormalities. In view of this, an enhancement method is proposed in this work to reduce noise and improve contrast of ultrasound images. The proposed method is based on scaling with neutrosophic similarity score (NSS), where an image is represented in the neutrosophic domain through three membership subsets T, I, and F denoting the degree of truth, indeterminacy, and falseness, respectively. The NSS measures the belonging degree of pixel to the texture using multi-criteria that is based on intensity, local mean intensity and edge detection. Then, NSS is utilized to extract the enhanced coefficient and this enhanced coefficient is applied to scale the input image. This scaling reflects contrast improvement and denoising effect on ultrasound images. The performance of proposed enhancement method is evaluated on clinical ultrasound images, using both subjective and objective image quality measures. In subjective evaluation, with proposed method, overall best score of 4.3 was obtained and that was 44% higher than the score of original images. These results were also supported by objective measures. The results demonstrated that the proposed method outperformed the other methods in terms of mean brightness preservation, edge preservation, structural similarity, and human perception-based image quality assessment. Thus, the proposed method can be used in computer-aided diagnosis systems and to visually assist radiologists in their interactive-decision-making task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于中性粒细胞相似性评分的超声图像增强方法。
超声图像对比度低,噪声大,对异常的检测有不利影响。鉴于此,本文提出了一种增强方法来降低噪声,提高超声图像的对比度。该方法基于中性相似性评分(NSS)的缩放,其中图像通过三个隶属度子集T, I和F分别表示真、不确定和假的程度,在中性域中表示。NSS使用基于强度、局部平均强度和边缘检测的多准则来度量像素对纹理的归属程度。然后利用NSS提取增强系数,利用增强系数对输入图像进行缩放。这种缩放反映了超声图像对比度的提高和去噪效果。采用主观和客观的图像质量指标对临床超声图像的增强效果进行了评价。在主观评价方面,本文提出的方法获得了4.3分的综合最高分,比原始图像的得分提高了44%。这些结果也得到了客观指标的支持。结果表明,该方法在平均亮度保持、边缘保持、结构相似度和基于人类感知的图像质量评估等方面优于其他方法。因此,所提出的方法可用于计算机辅助诊断系统,并在视觉上协助放射科医生进行交互式决策任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
期刊最新文献
Image Features and Diagnostic Value of Contrast-Enhanced Ultrasound for Ductal Carcinoma In Situ of the Breast: Preliminary Findings. Ultrasonic Imaging of Deeper Bone Defect Using Virtual Source Synthetic Aperture with Phased Shift Migration: A Phantom Study. Predictive Value of the Nomogram Model Based on Multimodal Ultrasound Features for Benign and Malignant Thyroid Nodules of C-TIRADS Category 4. High Frequency Ultrasound Transducer Based on Sm-Doped Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Ceramic for Intravascular Ultrasound Imaging. Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1