{"title":"Hyaluronan goes to great length.","authors":"Vera Gorbunova, Masaki Takasugi, Andrei Seluanov","doi":"10.15698/cst2020.09.231","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronan is a major non-protein component of extracellular matrix that affects biomechanical properties of tissues and interacts with cell receptors. Hyaluronan is a linear glycosaminoglycan composed of repeating disaccharides of (β, 1-4)-glucuronic acid (GlcUA) and (β, 1-3)-N-acetyl glucosamine (GlcNAc). The length of hyaluronan can range from an oligomer to an extremely long form up to millions of daltons. The concept that emerged in the field is that high (HMW-HA) and low (LMW-HA) molecular weight hyaluronans have different biological properties and trigger different signaling cascades within the cells. LMW-HA is associated with inflammation, tissue injury and metastasis, while HMW-HA improves tissue homeostasis and has anti-inflammatory and antimetastatic properties. HMW-HA is used in the clinic to treat arthritis, and as a filler in surgery and in the form of rinses to treat local inflammation. However, HMW-HA products used in the clinic come in a range of sizes between 0.5-6 mDa that are used interchangeably. Remarkably, the tissues of a long-lived and cancer-resistant rodent, the naked mole rat, contain abundant HA of very high molecular weight. While human fibroblasts secrete HA up to 2 MDa, naked mole rat fibroblasts produce HA of 6-12 MDa. Does this very high HMW-HA (vHMW-HA) differ functionally from HMW-HA? We found that vHMW-HA has superior cytoprotective properties compared to HMW-HA, and interacts differently with the CD44 receptor leading to distinct transcriptional changes (Takasugi <i>et al.</i> (2020), Nat Commun). These results indicate that vHMW-HA has greater therapeutic benefits than the standard HMW-HA.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 9","pages":"227-229"},"PeriodicalIF":4.1000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453635/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2020.09.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Hyaluronan is a major non-protein component of extracellular matrix that affects biomechanical properties of tissues and interacts with cell receptors. Hyaluronan is a linear glycosaminoglycan composed of repeating disaccharides of (β, 1-4)-glucuronic acid (GlcUA) and (β, 1-3)-N-acetyl glucosamine (GlcNAc). The length of hyaluronan can range from an oligomer to an extremely long form up to millions of daltons. The concept that emerged in the field is that high (HMW-HA) and low (LMW-HA) molecular weight hyaluronans have different biological properties and trigger different signaling cascades within the cells. LMW-HA is associated with inflammation, tissue injury and metastasis, while HMW-HA improves tissue homeostasis and has anti-inflammatory and antimetastatic properties. HMW-HA is used in the clinic to treat arthritis, and as a filler in surgery and in the form of rinses to treat local inflammation. However, HMW-HA products used in the clinic come in a range of sizes between 0.5-6 mDa that are used interchangeably. Remarkably, the tissues of a long-lived and cancer-resistant rodent, the naked mole rat, contain abundant HA of very high molecular weight. While human fibroblasts secrete HA up to 2 MDa, naked mole rat fibroblasts produce HA of 6-12 MDa. Does this very high HMW-HA (vHMW-HA) differ functionally from HMW-HA? We found that vHMW-HA has superior cytoprotective properties compared to HMW-HA, and interacts differently with the CD44 receptor leading to distinct transcriptional changes (Takasugi et al. (2020), Nat Commun). These results indicate that vHMW-HA has greater therapeutic benefits than the standard HMW-HA.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.