Up-regulation of CDHR5 expression promotes malignant phenotype of pancreatic ductal adenocarcinoma.

IF 5.3 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Cellular and Molecular Medicine Pub Date : 2020-11-01 Epub Date: 2020-10-06 DOI:10.1111/jcmm.15856
Junyi Gao, Mengyi Wang, Tong Li, Qiaofei Liu, Lei You, Quan Liao
{"title":"Up-regulation of CDHR5 expression promotes malignant phenotype of pancreatic ductal adenocarcinoma.","authors":"Junyi Gao, Mengyi Wang, Tong Li, Qiaofei Liu, Lei You, Quan Liao","doi":"10.1111/jcmm.15856","DOIUrl":null,"url":null,"abstract":"<p><p>CDHR5 has been reported to play key roles in carcinogenesis of various cancers, but its roles in pancreatic cancer have not been reported. The present study was designed to investigate its clinical value in pancreatic ductal adenocarcinoma (PDAC). Tissue microarray-based immunohistochemistry was performed to analyse the correlation between CDHR5 expression and clinical and pathological features of PDAC, as well as the CDHR5 expression during tumour progression. Cell function assays were performed to investigate CDHR5's effects on PDAC cells. Moreover, qRT-PCR was applied to investigate the expression of CDHR5 isoforms in PDAC cells. Expression of CDHR5 was higher on the membrane of PDAC cells. This high expression level was associated with shorter overall survival of PDAC patients and was identified as an independent prognostic factor for overall survival by multivariate Cox regression analysis. In addition, expression level of CDHR5 presented an increased trend in the occurrence and progression of PDAC. Cell experiment suggested that CDHR5 could notably promote invasion and migration of PDAC cells. Moreover, analysis of CDHR5 isoforms indicated CDHR5-L was the major isoform expressed in PDAC cell lines. CDHR5 appears to be a promising and novel prognostic factor for PDAC, and its promotion in PDAC metastasis might be ascribed to the isoform CDHR5-L.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15856","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.15856","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

CDHR5 has been reported to play key roles in carcinogenesis of various cancers, but its roles in pancreatic cancer have not been reported. The present study was designed to investigate its clinical value in pancreatic ductal adenocarcinoma (PDAC). Tissue microarray-based immunohistochemistry was performed to analyse the correlation between CDHR5 expression and clinical and pathological features of PDAC, as well as the CDHR5 expression during tumour progression. Cell function assays were performed to investigate CDHR5's effects on PDAC cells. Moreover, qRT-PCR was applied to investigate the expression of CDHR5 isoforms in PDAC cells. Expression of CDHR5 was higher on the membrane of PDAC cells. This high expression level was associated with shorter overall survival of PDAC patients and was identified as an independent prognostic factor for overall survival by multivariate Cox regression analysis. In addition, expression level of CDHR5 presented an increased trend in the occurrence and progression of PDAC. Cell experiment suggested that CDHR5 could notably promote invasion and migration of PDAC cells. Moreover, analysis of CDHR5 isoforms indicated CDHR5-L was the major isoform expressed in PDAC cell lines. CDHR5 appears to be a promising and novel prognostic factor for PDAC, and its promotion in PDAC metastasis might be ascribed to the isoform CDHR5-L.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上调CDHR5表达可促进胰腺导管腺癌的恶性表型。
CDHR5已被报道在多种癌症的致癌过程中发挥关键作用,但其在胰腺癌中的作用尚未报道。本研究旨在探讨其在胰腺导管腺癌(PDAC)中的临床价值。采用组织微阵列免疫组化分析CDHR5表达与PDAC临床病理特征的相关性,以及肿瘤进展过程中CDHR5的表达。通过细胞功能实验研究CDHR5对PDAC细胞的影响。此外,采用qRT-PCR技术研究CDHR5亚型在PDAC细胞中的表达。CDHR5在PDAC细胞膜上表达较高。这种高表达水平与PDAC患者较短的总生存期相关,并被多变量Cox回归分析确定为总生存期的独立预后因素。此外,CDHR5的表达水平在PDAC的发生和发展过程中呈升高趋势。细胞实验表明,CDHR5能显著促进PDAC细胞的侵袭和迁移。此外,CDHR5异构体分析表明,CDHR5- l是PDAC细胞系中表达的主要异构体。CDHR5似乎是PDAC的一个有希望的新预后因子,其促进PDAC转移可能归因于CDHR5- l的异构体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
1.90%
发文量
496
审稿时长
28 weeks
期刊介绍: Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.
期刊最新文献
Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. Application of Joint Mobilizing Chuna Following Tibial Plateau Fracture Surgery: A Study of Two Cases Korean Domestic Trends of Clinical Research and Direction of Intervention for Fibromyalgia Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. Loganetin and 5-fluorouracil synergistically inhibit the carcinogenesis of gastric cancer cells via down-regulation of the Wnt/β-catenin pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1