GW0742 activates miR-17-5p and inhibits TXNIP/NLRP3-mediated inflammation after hypoxic-ischaemic injury in rats and in PC12 cells.

IF 5.3 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Cellular and Molecular Medicine Pub Date : 2020-11-01 Epub Date: 2020-10-09 DOI:10.1111/jcmm.15698
Marcin Gamdzyk, Desislava Met Doycheva, Ruiqing Kang, Hong Tang, Zackary D Travis, Jiping Tang, John H Zhang
{"title":"GW0742 activates miR-17-5p and inhibits TXNIP/NLRP3-mediated inflammation after hypoxic-ischaemic injury in rats and in PC12 cells.","authors":"Marcin Gamdzyk,&nbsp;Desislava Met Doycheva,&nbsp;Ruiqing Kang,&nbsp;Hong Tang,&nbsp;Zackary D Travis,&nbsp;Jiping Tang,&nbsp;John H Zhang","doi":"10.1111/jcmm.15698","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effects of PPAR-β/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia-ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR-β/δ. Expression of proteins was measured by Western blot. Activation of miR-17-5p by GW0742 was assessed in PC12 cells by Dual-Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase-1 and IL-1β was increased after HI. GW0742 treatment significantly reduced the number of activated pro-inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL-6 and TNF-α. Either PPAR-β/δ antagonist GSK3787, miR-17-5p inhibitor, or TXNIP CRISPR activation abolished the anti-inflammatory effects of GW0742. Activation of PPAR-β/δ by GW0742 activated miR-17-5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL-1β and TNF-α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15698","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.15698","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 20

Abstract

This study aimed to investigate the effects of PPAR-β/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia-ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR-β/δ. Expression of proteins was measured by Western blot. Activation of miR-17-5p by GW0742 was assessed in PC12 cells by Dual-Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase-1 and IL-1β was increased after HI. GW0742 treatment significantly reduced the number of activated pro-inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL-6 and TNF-α. Either PPAR-β/δ antagonist GSK3787, miR-17-5p inhibitor, or TXNIP CRISPR activation abolished the anti-inflammatory effects of GW0742. Activation of PPAR-β/δ by GW0742 activated miR-17-5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL-1β and TNF-α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GW0742激活miR-17-5p,抑制大鼠和PC12细胞缺氧缺血损伤后TXNIP/ nlrp3介导的炎症。
本研究旨在探讨PPAR-β/δ受体激动剂GW0742对大鼠缺氧缺血(HI)模型和OGD模型PC12细胞神经炎症的影响。结扎颈总动脉并诱导缺氧150分钟诱导HI。免疫荧光用于定量小胶质细胞活化和确定PPAR-β/δ的细胞定位。Western blot检测蛋白表达。通过双荧光素酶报告基因试验评估GW0742在PC12细胞中对miR-17-5p的激活。HI后内源性TXNIP、NLRP3、cleaved caspase-1和IL-1β的表达增加。GW0742治疗显著减少HI后同侧半球激活的促炎小胶质细胞数量。机制上,GW0742显著降低TXNIP、NLRP3、IL-6、TNF-α的表达。PPAR-β/δ拮抗剂GSK3787、miR-17-5p抑制剂或TXNIP CRISPR激活均可消除GW0742的抗炎作用。GW0742激活PPAR-β/δ激活了PC12细胞中miR-17-5p的表达,OGD后细胞活力增加,同时TXNIP表达降低,IL-1β和TNF-α分泌减少。总之,GW0742可能是治疗HI患者的一种有前景的神经治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
1.90%
发文量
496
审稿时长
28 weeks
期刊介绍: Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.
期刊最新文献
Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. Application of Joint Mobilizing Chuna Following Tibial Plateau Fracture Surgery: A Study of Two Cases Korean Domestic Trends of Clinical Research and Direction of Intervention for Fibromyalgia Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. Loganetin and 5-fluorouracil synergistically inhibit the carcinogenesis of gastric cancer cells via down-regulation of the Wnt/β-catenin pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1