Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP.

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Journal Pub Date : 2021-05-01 Epub Date: 2020-09-29 DOI:10.1111/febs.15563
Adam Ben-Shem, Gabor Papai, Patrick Schultz
{"title":"Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP.","authors":"Adam Ben-Shem,&nbsp;Gabor Papai,&nbsp;Patrick Schultz","doi":"10.1111/febs.15563","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotes, transcription of protein encoding genes is initiated by the controlled deposition of the TATA-box binding protein TBP onto gene promoters, followed by the ordered assembly of a pre-initiation complex. The SAGA co-activator is a 19-subunit complex that stimulates transcription by the action of two chromatin-modifying enzymatic modules, a transcription activator binding module, and by delivering TBP. Recent cryo electron microscopy structures of yeast SAGA with bound nucleosome or TBP reveal the architecture of the different functional domains of the co-activator. An octamer of histone fold domains is found at the core of SAGA. This octamer, which deviates considerably from the symmetrical analogue forming the nucleosome, establishes a peripheral site for TBP binding where steric hindrance represses interaction with spurious DNA. The structures point to a mechanism for TBP delivery and release from SAGA that requires TFIIA and whose efficiency correlates with the affinity of DNA to TBP. These results provide a structural basis for understanding specific TBP delivery onto gene promoters and the role played by SAGA in regulating gene expression. The properties of the TBP delivery machine harboured by SAGA are compared with the TBP loading device present in the TFIID complex and show multiple similitudes.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 10","pages":"3135-3147"},"PeriodicalIF":5.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15563","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15563","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

In eukaryotes, transcription of protein encoding genes is initiated by the controlled deposition of the TATA-box binding protein TBP onto gene promoters, followed by the ordered assembly of a pre-initiation complex. The SAGA co-activator is a 19-subunit complex that stimulates transcription by the action of two chromatin-modifying enzymatic modules, a transcription activator binding module, and by delivering TBP. Recent cryo electron microscopy structures of yeast SAGA with bound nucleosome or TBP reveal the architecture of the different functional domains of the co-activator. An octamer of histone fold domains is found at the core of SAGA. This octamer, which deviates considerably from the symmetrical analogue forming the nucleosome, establishes a peripheral site for TBP binding where steric hindrance represses interaction with spurious DNA. The structures point to a mechanism for TBP delivery and release from SAGA that requires TFIIA and whose efficiency correlates with the affinity of DNA to TBP. These results provide a structural basis for understanding specific TBP delivery onto gene promoters and the role played by SAGA in regulating gene expression. The properties of the TBP delivery machine harboured by SAGA are compared with the TBP loading device present in the TFIID complex and show multiple similitudes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多功能SAGA复合物的结构及保持TBP的分子机制。
在真核生物中,蛋白质编码基因的转录是由TATA-box结合蛋白TBP在基因启动子上的受控沉积开始的,然后是预起始复合物的有序组装。SAGA共激活因子是一种19亚基复合物,通过两个染色质修饰酶模块、一个转录激活因子结合模块和传递TBP来刺激转录。结合核小体或TBP的酵母SAGA最近的低温电子显微镜结构揭示了共激活剂不同功能域的结构。在SAGA的核心发现了组蛋白折叠结构域的八聚体。这种八聚体与形成核小体的对称类似物有很大的不同,它为TBP结合建立了一个外周位点,在那里空间位阻抑制了与假DNA的相互作用。这些结构表明,TBP从SAGA中传递和释放的机制需要TFIIA,其效率与DNA对TBP的亲和力相关。这些结果为了解TBP在基因启动子上的特异性传递以及SAGA在调控基因表达中的作用提供了结构基础。将SAGA公司的TBP输送机的性能与TFIID综合体的TBP装载装置进行了比较,发现了多重相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
期刊最新文献
Autophagy and tumorigenesis. Migrasome biogenesis and functions. Nuclear speckles: dynamic hubs of gene expression regulation. Molecular mechanisms and biological roles of GOMED. Autophagy in the retinal pigment epithelium: a new vision and future challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1