The Role of Tocilizumab in Cytokine Storm and Improving Outcomes in COVID-19.

Afroze Ali, Milad H Kamjani, Marc M Kesselman
{"title":"The Role of Tocilizumab in Cytokine Storm and Improving Outcomes in COVID-19.","authors":"Afroze Ali,&nbsp;Milad H Kamjani,&nbsp;Marc M Kesselman","doi":"10.2174/1574891X15666200922155712","DOIUrl":null,"url":null,"abstract":"<p><p>To date, severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) has infected millions of individuals worldwide. This virus causes coronavirus disease 2019 (COVID-19) and has led to numerous deaths worldwide. A large percentage of infected patients present asymptomatically, augmenting the spread of the virus. Symptomatic COVID-19 commonly causes mild to severe respiratory disease and fever, but some individuals experience serious complications resulting in death. Immune compromised, high risk, and elderly individuals are at an increased risk of more severe consequences of the illness such as respiratory failure, organ dysfunction, and shock. Cytokine storm (also known as cytokine release syndrome (CRS)), a systemic inflammatory response that can be triggered by an infection, has been associated with the symptom progression of COVID-19. This review evaluates several published studies that have implemented tocilizumab (TCZ), an IL-6 receptor antibody (US20120253016A1), in COVID-19 treatment. Outcomes and biomarkers of patients treated with TCZ are compared to patients treated with standard of care regimens. Interleukin-6 (IL-6), a prominent inflammatory cytokine involved in CRS in various inflammatory conditions, may have a vital role in the underlying mechanism involved in debilitating SARS-CoV-2 infections and could serve as a viable treatment target. Studies suggest that TCZ may aid in the recovery of patients with COVID-19 and reduce mortality.</p>","PeriodicalId":20909,"journal":{"name":"Recent patents on anti-infective drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-infective drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574891X15666200922155712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9

Abstract

To date, severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) has infected millions of individuals worldwide. This virus causes coronavirus disease 2019 (COVID-19) and has led to numerous deaths worldwide. A large percentage of infected patients present asymptomatically, augmenting the spread of the virus. Symptomatic COVID-19 commonly causes mild to severe respiratory disease and fever, but some individuals experience serious complications resulting in death. Immune compromised, high risk, and elderly individuals are at an increased risk of more severe consequences of the illness such as respiratory failure, organ dysfunction, and shock. Cytokine storm (also known as cytokine release syndrome (CRS)), a systemic inflammatory response that can be triggered by an infection, has been associated with the symptom progression of COVID-19. This review evaluates several published studies that have implemented tocilizumab (TCZ), an IL-6 receptor antibody (US20120253016A1), in COVID-19 treatment. Outcomes and biomarkers of patients treated with TCZ are compared to patients treated with standard of care regimens. Interleukin-6 (IL-6), a prominent inflammatory cytokine involved in CRS in various inflammatory conditions, may have a vital role in the underlying mechanism involved in debilitating SARS-CoV-2 infections and could serve as a viable treatment target. Studies suggest that TCZ may aid in the recovery of patients with COVID-19 and reduce mortality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
托珠单抗在COVID-19细胞因子风暴中的作用及改善预后
迄今为止,严重急性呼吸综合征冠状病毒2 (SARSCoV- 2)已在全球感染了数百万人。这种病毒会导致2019冠状病毒病(COVID-19),并在世界范围内导致许多人死亡。很大比例的感染患者无症状出现,增加了病毒的传播。有症状的COVID-19通常会引起轻度至重度呼吸道疾病和发烧,但有些人会出现严重并发症,导致死亡。免疫功能低下、高危人群和老年人出现呼吸衰竭、器官功能障碍和休克等更严重疾病后果的风险增加。细胞因子风暴(也称为细胞因子释放综合征(CRS))是一种可由感染引发的全身炎症反应,与COVID-19的症状进展有关。本综述评估了几项已发表的使用IL-6受体抗体(US20120253016A1) tocilizumab (TCZ)治疗COVID-19的研究。用TCZ治疗的患者的结果和生物标志物与用标准护理方案治疗的患者进行比较。白细胞介素-6 (IL-6)是一种重要的炎症细胞因子,参与各种炎症条件下的CRS,可能在削弱SARS-CoV-2感染的潜在机制中发挥重要作用,并可能作为可行的治疗靶点。研究表明,TCZ可能有助于COVID-19患者的康复并降低死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recent patents on anti-infective drug discovery
Recent patents on anti-infective drug discovery Medicine-Pharmacology (medical)
CiteScore
2.40
自引率
0.00%
发文量
1
期刊介绍: Recent Patents on Anti-Infective Drug Discovery publishes review articles on recent patents in the field of anti-infective drug discovery e.g. novel bioactive compounds, analogs & targets. A selection of important and recent patents on anti-infective drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-infective drug design and discovery.
期刊最新文献
Essential oils as alternative antimicrobials: current status The Staphylococcal Cassette Chromosome mec (SCCmec) Analysis and Biofilm Formation of Methicillin-Resistant Staphylococcus cohnii Isolated from Clinical Samples in Tehran, Iran. Meet Our Associate Editor Secondary metabolites of endophytic fungi from Newbouldia laevis and Cassia tora leaves: prospecting for new antimicrobial agents. Meet Our Editor-in-Chief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1