Reconstructing human pancreatic islet architectures using computational optimization.

IF 1.9 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Islets Pub Date : 2020-11-01 Epub Date: 2020-10-22 DOI:10.1080/19382014.2020.1823178
Gerardo J Félix-Martínez, Aurelio N Mata, J Rafael Godínez-Fernández
{"title":"Reconstructing human pancreatic islet architectures using computational optimization.","authors":"Gerardo J Félix-Martínez,&nbsp;Aurelio N Mata,&nbsp;J Rafael Godínez-Fernández","doi":"10.1080/19382014.2020.1823178","DOIUrl":null,"url":null,"abstract":"<p><p>We outline a general methodology based on computational optimization and experimental data to reconstruct human pancreatic islet architectures. By using the nuclei coordinates of islet cells obtained through DAPI staining, cell types identified by immunostaining, and cell size distributions estimated from capacitance measurements, reconstructed islets composed of non-overlapping spherical cells were obtained through an iterative optimization procedure. In all cases, the reconstructed architectures included >99% of the experimental identified cells, each of them having a radius within the experimentally reported ranges. Given the wide use of mathematical modeling for the study of pancreatic cells, and recently, of cell-cell interactions within the pancreatic islets, the methodology here proposed, also capable of identifying cell-to-cell contacts, is aimed to provide with a framework for modeling and analyzing experimentally-based pancreatic islet architectures.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"12 6","pages":"121-133"},"PeriodicalIF":1.9000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2020.1823178","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Islets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19382014.2020.1823178","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 7

Abstract

We outline a general methodology based on computational optimization and experimental data to reconstruct human pancreatic islet architectures. By using the nuclei coordinates of islet cells obtained through DAPI staining, cell types identified by immunostaining, and cell size distributions estimated from capacitance measurements, reconstructed islets composed of non-overlapping spherical cells were obtained through an iterative optimization procedure. In all cases, the reconstructed architectures included >99% of the experimental identified cells, each of them having a radius within the experimentally reported ranges. Given the wide use of mathematical modeling for the study of pancreatic cells, and recently, of cell-cell interactions within the pancreatic islets, the methodology here proposed, also capable of identifying cell-to-cell contacts, is aimed to provide with a framework for modeling and analyzing experimentally-based pancreatic islet architectures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算优化重建人类胰岛结构。
我们概述了一种基于计算优化和实验数据的一般方法来重建人类胰岛结构。利用DAPI染色获得的胰岛细胞核坐标、免疫染色鉴定的细胞类型和电容测量估计的细胞大小分布,通过迭代优化程序获得非重叠球形细胞组成的重建胰岛。在所有情况下,重建的结构包括>99%的实验识别细胞,每个细胞的半径都在实验报告的范围内。鉴于数学建模在胰腺细胞研究中的广泛应用,以及最近胰岛内细胞间相互作用的研究,本文提出的方法也能够识别细胞间的接触,旨在为基于实验的胰岛结构建模和分析提供一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Islets
Islets ENDOCRINOLOGY & METABOLISM-
CiteScore
3.30
自引率
4.50%
发文量
10
审稿时长
>12 weeks
期刊介绍: Islets is the first international, peer-reviewed research journal dedicated to islet biology. Islets publishes high-quality clinical and experimental research into the physiology and pathology of the islets of Langerhans. In addition to original research manuscripts, Islets is the leading source for cutting-edge Perspectives, Reviews and Commentaries. Our goal is to foster communication and a rapid exchange of information through timely publication of important results using print as well as electronic formats.
期刊最新文献
3D evaluation of the extracellular matrix of hypoxic pancreatic islets using light sheet fluorescence microscopy. Serum from pregnant donors induces human beta cell proliferation. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Decreased islet amyloid polypeptide staining in the islets of insulinoma patients. Human research islet cell culture outcomes at the Alberta Diabetes Institute IsletCore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1