Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae.

IF 3.4 Q1 Agricultural and Biological Sciences BMC Evolutionary Biology Pub Date : 2020-09-25 DOI:10.1186/s12862-020-01685-6
Tuc H M Nguyen, Sargunvir Sondhi, Andrew Ziesel, Swati Paliwal, Heather L Fiumera
{"title":"Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae.","authors":"Tuc H M Nguyen, Sargunvir Sondhi, Andrew Ziesel, Swati Paliwal, Heather L Fiumera","doi":"10.1186/s12862-020-01685-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mitochondrial function requires numerous genetic interactions between mitochondrial- and nuclear- encoded genes. While selection for optimal mitonuclear interactions should result in coevolution between both genomes, evidence for mitonuclear coadaptation is challenging to document. Genetic models where mitonuclear interactions can be explored are needed.</p><p><strong>Results: </strong>We systematically exchanged mtDNAs between 15 Saccharomyces cerevisiae isolates from a variety of ecological niches to create 225 unique mitochondrial-nuclear genotypes. Analysis of phenotypic profiles confirmed that environmentally-sensitive interactions between mitochondrial and nuclear genotype contributed to growth differences. Exchanges of mtDNAs between strains of the same or different clades were just as likely to demonstrate mitonuclear epistasis although epistatic effect sizes increased with genetic distances. Strains with their original mtDNAs were more fit than strains with synthetic mitonuclear combinations when grown in media that resembled isolation habitats.</p><p><strong>Conclusions: </strong>This study shows that natural variation in mitonuclear interactions contributes to fitness landscapes. Multiple examples of coadapted mitochondrial-nuclear genotypes suggest that selection for mitonuclear interactions may play a role in helping yeasts adapt to novel environments and promote coevolution.</p>","PeriodicalId":9111,"journal":{"name":"BMC Evolutionary Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-020-01685-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mitochondrial function requires numerous genetic interactions between mitochondrial- and nuclear- encoded genes. While selection for optimal mitonuclear interactions should result in coevolution between both genomes, evidence for mitonuclear coadaptation is challenging to document. Genetic models where mitonuclear interactions can be explored are needed.

Results: We systematically exchanged mtDNAs between 15 Saccharomyces cerevisiae isolates from a variety of ecological niches to create 225 unique mitochondrial-nuclear genotypes. Analysis of phenotypic profiles confirmed that environmentally-sensitive interactions between mitochondrial and nuclear genotype contributed to growth differences. Exchanges of mtDNAs between strains of the same or different clades were just as likely to demonstrate mitonuclear epistasis although epistatic effect sizes increased with genetic distances. Strains with their original mtDNAs were more fit than strains with synthetic mitonuclear combinations when grown in media that resembled isolation habitats.

Conclusions: This study shows that natural variation in mitonuclear interactions contributes to fitness landscapes. Multiple examples of coadapted mitochondrial-nuclear genotypes suggest that selection for mitonuclear interactions may play a role in helping yeasts adapt to novel environments and promote coevolution.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过麦角酵母中的 mtDNA 置换揭示线粒体与核的共同适应。
背景:线粒体功能需要线粒体编码基因与核编码基因之间的大量基因相互作用。虽然选择最佳的线粒体核相互作用应导致两个基因组的共同进化,但线粒体核共同适应的证据却难以记录。我们需要可以探索有丝分裂核相互作用的遗传模型:结果:我们在来自不同生态位点的 15 个分离酵母菌之间系统地交换了 mtDNA,从而产生了 225 个独特的线粒体-核基因型。表型分析证实,线粒体与核基因型之间对环境敏感的相互作用导致了生长差异。同一支系或不同支系的菌株之间的 mtDNA 交换同样可能表现出线粒体核外显性,尽管外显效应的大小随遗传距离的增加而增加。当菌株在类似隔离生境的培养基中生长时,具有原始mtDNA的菌株比具有合成有丝分裂核组合的菌株更适合生长:结论:这项研究表明,有丝分裂核相互作用的自然变异有助于形成适合度景观。线粒体-核基因型共同适应的多个实例表明,对有丝分裂核相互作用的选择可能在帮助酵母菌适应新环境和促进共同进化方面发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Evolutionary Biology
BMC Evolutionary Biology 生物-进化生物学
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: BMC Evolutionary Biology is an open access, peer-reviewed journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.
期刊最新文献
Correlation between bioluminescent blinks and swimming behavior in the splitfin flashlight fish Anomalops katoptron Home range of three turtle species in Central Yucatan. A comparative study Variation and plasticity in life-history traits and fitness of wild Arabidopsis thaliana populations are not related to their genotypic and ecological diversity Does local soil factor drive functional leaf trait variation? A test on Neilingding Island, South China Biodiversity and distribution patterns of blooming jellyfish in the Bohai Sea revealed by eDNA metabarcoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1