{"title":"Conservation analysis of core cell cycle regulators and their transcriptional behavior during limb regeneration in Ambystoma mexicanum","authors":"Annie Espinal-Centeno , Melissa Dipp-Álvarez , Carlos Saldaña , Laszlo Bako , Alfredo Cruz-Ramírez","doi":"10.1016/j.mod.2020.103651","DOIUrl":null,"url":null,"abstract":"<div><p><em>Ambystoma mexicanum</em> (axolotl) has been one of the major experimental models for the study of regeneration during the past 100 years. Axolotl limb regeneration takes place through a multi-stage and complex developmental process called epimorphosis that involves diverse events of cell reprogramming. Such events start with dedifferentiation of somatic cells and the proliferation of quiescent stem cells to generate a population of proliferative cells called blastema. Once the blastema reaches a mature stage, cells undergo progressive differentiation into the diverse cell lineages that will form the new limb. Such pivotal cell reprogramming phenomena depend on the fine-tuned regulation of the cell cycle in each regeneration stage, where cell populations display specific proliferative capacities and differentiation status. The axolotl genome has been fully sequenced and released recently, and diverse RNA-seq approaches have also been generated, enabling the identification and conservatory analysis of core cell cycle regulators in this species. We report here our results from such analyses and present the transcriptional behavior of key regulatory factors during axolotl limb regeneration. We also found conserved protein interactions between axolotl Cyclin Dependent Kinases 2, 4 and 6 and Cyclins type D and E. Canonical CYC-CDK interactions that play major roles in modulating cell cycle progression in eukaryotes.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"164 ","pages":"Article 103651"},"PeriodicalIF":2.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2020.103651","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477320300563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
Ambystoma mexicanum (axolotl) has been one of the major experimental models for the study of regeneration during the past 100 years. Axolotl limb regeneration takes place through a multi-stage and complex developmental process called epimorphosis that involves diverse events of cell reprogramming. Such events start with dedifferentiation of somatic cells and the proliferation of quiescent stem cells to generate a population of proliferative cells called blastema. Once the blastema reaches a mature stage, cells undergo progressive differentiation into the diverse cell lineages that will form the new limb. Such pivotal cell reprogramming phenomena depend on the fine-tuned regulation of the cell cycle in each regeneration stage, where cell populations display specific proliferative capacities and differentiation status. The axolotl genome has been fully sequenced and released recently, and diverse RNA-seq approaches have also been generated, enabling the identification and conservatory analysis of core cell cycle regulators in this species. We report here our results from such analyses and present the transcriptional behavior of key regulatory factors during axolotl limb regeneration. We also found conserved protein interactions between axolotl Cyclin Dependent Kinases 2, 4 and 6 and Cyclins type D and E. Canonical CYC-CDK interactions that play major roles in modulating cell cycle progression in eukaryotes.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.