Computer Algebra and Algorithms for Unbiased Moment Estimation of Arbitrary Order.

IF 0.1 Q4 MATHEMATICS Cogent mathematics & statistics Pub Date : 2019-01-01 Epub Date: 2019-12-21 DOI:10.1080/25742558.2019.1701917
Inna Gerlovina, Alan E Hubbard
{"title":"Computer Algebra and Algorithms for Unbiased Moment Estimation of Arbitrary Order.","authors":"Inna Gerlovina,&nbsp;Alan E Hubbard","doi":"10.1080/25742558.2019.1701917","DOIUrl":null,"url":null,"abstract":"<p><p>While unbiased central moment estimators of lower orders (such as a sample variance) are easily obtainable and often used in practice, derivation of unbiased estimators of higher orders might be more challenging due to long math and tricky combinatorics. Moreover, higher orders necessitate calculation of estimators of powers and products that also amount to these orders. We develop a software algorithm that allows the user to obtain unbiased estimators of an arbitrary order and provide results up to the 6th order, including powers and products of lower orders. The method also extends to finding pooled estimates of higher central moments of several different populations (<i>e.g.</i> for two-sample tests). We introduce an R package <i>Umoments</i> that calculates one- and two-sample estimates and generates intermediate results used to obtain these estimators.</p>","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":"6 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2019.1701917","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2019.1701917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

While unbiased central moment estimators of lower orders (such as a sample variance) are easily obtainable and often used in practice, derivation of unbiased estimators of higher orders might be more challenging due to long math and tricky combinatorics. Moreover, higher orders necessitate calculation of estimators of powers and products that also amount to these orders. We develop a software algorithm that allows the user to obtain unbiased estimators of an arbitrary order and provide results up to the 6th order, including powers and products of lower orders. The method also extends to finding pooled estimates of higher central moments of several different populations (e.g. for two-sample tests). We introduce an R package Umoments that calculates one- and two-sample estimates and generates intermediate results used to obtain these estimators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任意阶无偏矩估计的计算机代数与算法。
虽然低阶的无偏中心矩估计量(如样本方差)很容易获得并经常在实践中使用,但由于冗长的数学和棘手的组合,高阶的无偏估计量的推导可能更具挑战性。此外,更高的阶数需要计算幂和乘积的估计量,这些估计量也等于这些阶数。我们开发了一种软件算法,允许用户获得任意阶的无偏估计量,并提供高达6阶的结果,包括低阶的幂和乘积。该方法还扩展到寻找几个不同种群的较高中心矩的汇总估计(例如,用于双样本测试)。我们介绍了一个R包Umoments,它计算单样本和双样本估计,并生成用于获得这些估计的中间结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
On roman domination number of functigraph and its complement Weakly compatible mappings with respect to a generalized c-distance and common fixed point results On W-contractions of Jungck-Ćirić-Wardowski-type in metric spaces Some compactness results by elliptic operators Yamabe solitons on 3-dimensional cosymplectic manifolds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1