{"title":"Modeling nucleus accumbens : A Computational Model from Single Cell to Circuit Level.","authors":"Rahmi Elibol, Neslihan Serap Şengör","doi":"10.1007/s10827-020-00769-y","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 1","pages":"21-35"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-020-00769-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-020-00769-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.