Yazhen Wang, Chenglong Wang, Shaobo Dong, Liwu Zu, Tianyu Lan
{"title":"The study on microstructure and mechanical properties of multi-component composite based on HDPE.","authors":"Yazhen Wang, Chenglong Wang, Shaobo Dong, Liwu Zu, Tianyu Lan","doi":"10.1080/15685551.2020.1818956","DOIUrl":null,"url":null,"abstract":"<p><p>The basalt fiber (BF) and polyamide 6 (PA6) reinforced HDPE composite were prepared; the effects of adding fiber, organic filler, and polar component maleic anhydride (MA) on the microstructural characteristics of composites were investigated. Microstructural characterization evidenced the binary-dispersed phase (PA6/BF) is of a core-shell structure in which the component PA6 encapsulates component BF, and the extent of encapsulates would decline with the MA adding. It is confirmed that the microstructure is related to the interfacial tension of components by the SEM observation and theoretical calculation. The effect of multi-component on the crystallization behavior of composites was investigated. Differential scanning calorimeter (DSC) analyses showed a significant change in the HDPE microstructure. It demonstrated PA6 and BF as a nucleation agent accelerated the crystallization rate under the cooling process. The corresponding crystallization kinetics and activation energy were further analyzed using the Jeziorny method, Avrami-Ozawa method, Kissinger method. The results showed MA markedly changed the crystal growth mechanism of the HDPE matrix to heterogeneous nucleation for acicular and tabular crystal growth during the annealing step. The lowest crystallinity energy and crystallinity were observed for BF/PA6/HDPE composites with 3 wt % MA. Furthermore, a clear improvement of mechanical properties (by 61%) were observed, which mechanism is discussed in detail. The mechanism of toughening is not only one, but the result of a variety of mechanisms together.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"23 1","pages":"164-176"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15685551.2020.1818956","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2020.1818956","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 3
Abstract
The basalt fiber (BF) and polyamide 6 (PA6) reinforced HDPE composite were prepared; the effects of adding fiber, organic filler, and polar component maleic anhydride (MA) on the microstructural characteristics of composites were investigated. Microstructural characterization evidenced the binary-dispersed phase (PA6/BF) is of a core-shell structure in which the component PA6 encapsulates component BF, and the extent of encapsulates would decline with the MA adding. It is confirmed that the microstructure is related to the interfacial tension of components by the SEM observation and theoretical calculation. The effect of multi-component on the crystallization behavior of composites was investigated. Differential scanning calorimeter (DSC) analyses showed a significant change in the HDPE microstructure. It demonstrated PA6 and BF as a nucleation agent accelerated the crystallization rate under the cooling process. The corresponding crystallization kinetics and activation energy were further analyzed using the Jeziorny method, Avrami-Ozawa method, Kissinger method. The results showed MA markedly changed the crystal growth mechanism of the HDPE matrix to heterogeneous nucleation for acicular and tabular crystal growth during the annealing step. The lowest crystallinity energy and crystallinity were observed for BF/PA6/HDPE composites with 3 wt % MA. Furthermore, a clear improvement of mechanical properties (by 61%) were observed, which mechanism is discussed in detail. The mechanism of toughening is not only one, but the result of a variety of mechanisms together.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications