Ensemble Learning with Multiclassifiers on Pediatric Hand Radiograph Segmentation for Bone Age Assessment.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2020-10-27 eCollection Date: 2020-01-01 DOI:10.1155/2020/8866700
Rui Liu, Yuanyuan Jia, Xiangqian He, Zhe Li, Jinhua Cai, Hao Li, Xiao Yang
{"title":"Ensemble Learning with Multiclassifiers on Pediatric Hand Radiograph Segmentation for Bone Age Assessment.","authors":"Rui Liu, Yuanyuan Jia, Xiangqian He, Zhe Li, Jinhua Cai, Hao Li, Xiao Yang","doi":"10.1155/2020/8866700","DOIUrl":null,"url":null,"abstract":"<p><p>In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8866700"},"PeriodicalIF":3.3000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8866700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多分类器对小儿手部 X 光片进行集合学习,以评估骨龄。
在小儿骨龄自动评估(BAA)的临床实践研究中,手部X光片中物体区域的提取是一个重要环节,它直接影响到骨龄自动评估的预测准确性。但目前尚未找到完美的分割方案。本研究旨在开发一种高精度、高效率的手部 X 光片自动分割方法。我们将手部分割任务视为一个分类问题。每张图像的最佳分割阈值被视为预测目标。我们利用每张图像的归一化直方图、平均值和方差作为输入特征,基于多个分类器的集合学习来训练分类模型。数据集包括 600 张骨龄在 1 至 18 岁之间的左侧 X 光片。与传统的分割方法和最先进的 U-Net 网络相比,所提出的方法精度更高、计算量更小,平均 PSNR 为 52.43 dB,SSIM 为 0.97,DSC 为 0.97,JSI 为 0.91,更适合临床应用。此外,实验结果还验证了手部 X 光片分割可使 BAA 性能平均提高至少 13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1