Genome Editing for Rare Diseases.

IF 2.3 Q4 CELL & TISSUE ENGINEERING Current Stem Cell Reports Pub Date : 2020-09-01 Epub Date: 2020-07-07 DOI:10.1007/s40778-020-00175-1
Arun Pradhan, Tanya V Kalin, Vladimir V Kalinichenko
{"title":"Genome Editing for Rare Diseases.","authors":"Arun Pradhan, Tanya V Kalin, Vladimir V Kalinichenko","doi":"10.1007/s40778-020-00175-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of the review: </strong>Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision.</p><p><strong>Recent findings: </strong>Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases.</p><p><strong>Summary: </strong>Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.</p>","PeriodicalId":37444,"journal":{"name":"Current Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653884/pdf/nihms-1610082.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Stem Cell Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40778-020-00175-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of the review: Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision.

Recent findings: Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases.

Summary: Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
罕见疾病的基因组编辑。
综述的目的:全世界有大量患者受到各种罕见疾病的影响,但这些患者的有效治疗方案却十分有限。与更常见的疾病相比,罕见病的资金仍然不足,导致研究进展严重滞后,最终无法找到有效的治疗方法。在此,我们回顾了如何利用基因组编辑工具来了解罕见病的发病机制,并开发出更多高精度的治疗方法:包括 CRISPR/Cas9、TALEN 和 ZFN 在内的几种基因组编辑方法已被用于生成罕见病的动物模型、了解疾病的发病机制、纠正患者体细胞和 iPSCs 中的致病突变以及开发罕见病的新疗法。CRISPR/Cas9 系统相对简单,与 TALEN 和 ZFN 相比效率更高,因此成为基因组编辑中使用最广泛的方法。CRISPR/Cas9正在成为治疗罕见单基因疾病和其他基因定义的人类疾病的一种可行的基因编辑方法。摘要:在已知的约 7000 种罕见疾病中,只有不到 5%的疾病有美国食品及药物管理局批准的疗法,因此迫切需要开展更多的研究和临床试验,以确定罕见病患者的有效治疗方案。开发能够纠正或替换功能失调基因的高效基因组编辑工具将为这些疾病带来新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Stem Cell Reports
Current Stem Cell Reports Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
0.00%
发文量
19
期刊介绍: The goal of this journal is to publish cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. We aim to provide incisive, insightful, and balanced contributions from leading experts in each relevant domain that will be of immediate interest to a wide readership of clinicians, basic scientists, and translational investigators. We accomplish this aim by appointing major authorities to serve as Section Editors in key subject areas across the discipline. Section Editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year on their topics, in a crisp and readable format. We also provide commentaries from well-known figures in the field, and an Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.
期刊最新文献
Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review Mesenchymal Stromal Cell Immunomodulatory Potential for Orthopedic Applications can be fine-tuned via 3D nano-engineered Scaffolds Maternal Gene Delivery for the Prevention and Treatment of Obstetric Conditions Prenatal Therapy for Congenital Diaphragmatic Hernia and Myelomeningocele: Advances in Particle-Based Delivery RNA-Mediated Regulation of Glycolysis in Embryonic Stem Cell Pluripotency and Differentiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1