{"title":"An Antiviral Drug Screening Platform with a FRET Biosensor for Measurement of Arenavirus Z Assembly.","authors":"Tatsuaki Mizutani, Yusuke Ohba, Satoshi Mizuta, Jiro Yasuda, Shuzo Urata","doi":"10.1247/csf.20030","DOIUrl":null,"url":null,"abstract":"<p><p>The smallest arenavirus gene product, Z protein, plays critical roles in the virus life cycle. Z is the major driving force of budding and particle production because of a unique property that defines self-assembly. In addition to the roles in budding, Z also participates in the suppression of type I interferon production to evade host antiviral immunity. Therefore, Z and its assembled form are an attractive drug target for arenaviral hemorrhagic fever, such as Lassa fever. Here, we developed a biosensor that enabled the evaluation of the prototype arenavirus, lymphocytic choriomeningitis virus (LCMV), Z assembly using the principle of Förster resonance energy transfer (FRET). This FRET biosensor consisted of three tandem Z that were sandwiched between super-enhanced cyan-emitting fluorescent protein and variant of a yellow-emitting mutant of green fluorescent protein so that Z-Z intermolecular binding via the really interesting new gene finger domain increased the emission ratio. To identify novel anti-arenavirus compounds, the FRET biosensor was employed to screen the PathogenBox400 for inhibitors of Z assembly in a 96-well plate format. The assay performed well, with a Z'-factor of 0.89, and identified two compounds that decreased the emission ratio of the FRET biosensor in a dose-dependent manner. Of them, the compound, 5,6,7,8-tetrahydro-7-(benzyl)-pyrido[4',3':4,5]thieno[2,3-d]pyrimidin-2,4-diamine, was found to significantly inhibit LCMV propagation in infected cells. Thereby, the present study demonstrated that a novel FRET biosensor incorporating Z assembly built on FRET and named Zabton, was a valuable screening tool to identify anti-arenavirus compounds in the context of inhibition of Z assembly.Key words: Arenavirus, Förster resonance energy transfer, anti-viral drugs, Z protein.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 2","pages":"155-163"},"PeriodicalIF":2.0000,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.20030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The smallest arenavirus gene product, Z protein, plays critical roles in the virus life cycle. Z is the major driving force of budding and particle production because of a unique property that defines self-assembly. In addition to the roles in budding, Z also participates in the suppression of type I interferon production to evade host antiviral immunity. Therefore, Z and its assembled form are an attractive drug target for arenaviral hemorrhagic fever, such as Lassa fever. Here, we developed a biosensor that enabled the evaluation of the prototype arenavirus, lymphocytic choriomeningitis virus (LCMV), Z assembly using the principle of Förster resonance energy transfer (FRET). This FRET biosensor consisted of three tandem Z that were sandwiched between super-enhanced cyan-emitting fluorescent protein and variant of a yellow-emitting mutant of green fluorescent protein so that Z-Z intermolecular binding via the really interesting new gene finger domain increased the emission ratio. To identify novel anti-arenavirus compounds, the FRET biosensor was employed to screen the PathogenBox400 for inhibitors of Z assembly in a 96-well plate format. The assay performed well, with a Z'-factor of 0.89, and identified two compounds that decreased the emission ratio of the FRET biosensor in a dose-dependent manner. Of them, the compound, 5,6,7,8-tetrahydro-7-(benzyl)-pyrido[4',3':4,5]thieno[2,3-d]pyrimidin-2,4-diamine, was found to significantly inhibit LCMV propagation in infected cells. Thereby, the present study demonstrated that a novel FRET biosensor incorporating Z assembly built on FRET and named Zabton, was a valuable screening tool to identify anti-arenavirus compounds in the context of inhibition of Z assembly.Key words: Arenavirus, Förster resonance energy transfer, anti-viral drugs, Z protein.
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.