Ge Peng, Jeffrey L Privette, Curt Tilmes, Sky Bristol, Tom Maycock, John J Bates, Scott Hausman, Otis Brown, Edward J Kearns
{"title":"A Conceptual Enterprise Framework for Managing Scientific Data Stewardship.","authors":"Ge Peng, Jeffrey L Privette, Curt Tilmes, Sky Bristol, Tom Maycock, John J Bates, Scott Hausman, Otis Brown, Edward J Kearns","doi":"10.5334/dsj-2018-015","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific data stewardship is an important part of long-term preservation and the use/reuse of digital research data. It is critical for ensuring trustworthiness of data, products, and services, which is important for decision-making. Recent U.S. federal government directives and scientific organization guidelines have levied specific requirements, increasing the need for a more formal approach to ensuring that stewardship activities support compliance verification and reporting. However, many science data centers lack an integrated, systematic, and holistic framework to support such efforts. The current business- and process-oriented stewardship frameworks are too costly and lengthy for most data centers to implement. They often do not explicitly address the federal stewardship requirements and/or the uniqueness of geospatial data. This work proposes a data-centric conceptual enterprise framework for managing stewardship activities, based on the philosophy behind the Plan-Do-Check-Act (PDCA) cycle, a proven industrial concept. This framework, which includes the application of maturity assessment models, allows for quantitative evaluation of how organizations manage their stewardship activities and supports informed decision-making for continual improvement towards full compliance with federal, agency, and user requirements.</p>","PeriodicalId":35375,"journal":{"name":"Data Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580807/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/dsj-2018-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 15
Abstract
Scientific data stewardship is an important part of long-term preservation and the use/reuse of digital research data. It is critical for ensuring trustworthiness of data, products, and services, which is important for decision-making. Recent U.S. federal government directives and scientific organization guidelines have levied specific requirements, increasing the need for a more formal approach to ensuring that stewardship activities support compliance verification and reporting. However, many science data centers lack an integrated, systematic, and holistic framework to support such efforts. The current business- and process-oriented stewardship frameworks are too costly and lengthy for most data centers to implement. They often do not explicitly address the federal stewardship requirements and/or the uniqueness of geospatial data. This work proposes a data-centric conceptual enterprise framework for managing stewardship activities, based on the philosophy behind the Plan-Do-Check-Act (PDCA) cycle, a proven industrial concept. This framework, which includes the application of maturity assessment models, allows for quantitative evaluation of how organizations manage their stewardship activities and supports informed decision-making for continual improvement towards full compliance with federal, agency, and user requirements.
期刊介绍:
The Data Science Journal is a peer-reviewed electronic journal publishing papers on the management of data and databases in Science and Technology. Details can be found in the prospectus. The scope of the journal includes descriptions of data systems, their publication on the internet, applications and legal issues. All of the Sciences are covered, including the Physical Sciences, Engineering, the Geosciences and the Biosciences, along with Agriculture and the Medical Science. The journal publishes papers about data and data systems; it does not publish data or data compilations. However it may publish papers about methods of data compilation or analysis.