Dendritic Voltage Recordings Explain Paradoxical Synaptic Plasticity: A Modeling Study.

IF 2.8 4区 医学 Q2 NEUROSCIENCES Frontiers in Synaptic Neuroscience Pub Date : 2020-11-02 eCollection Date: 2020-01-01 DOI:10.3389/fnsyn.2020.585539
Claire Meissner-Bernard, Matthias Chinyen Tsai, Laureline Logiaco, Wulfram Gerstner
{"title":"Dendritic Voltage Recordings Explain Paradoxical Synaptic Plasticity: A Modeling Study.","authors":"Claire Meissner-Bernard,&nbsp;Matthias Chinyen Tsai,&nbsp;Laureline Logiaco,&nbsp;Wulfram Gerstner","doi":"10.3389/fnsyn.2020.585539","DOIUrl":null,"url":null,"abstract":"<p><p>Experiments have shown that the same stimulation pattern that causes Long-Term Potentiation in proximal synapses, will induce Long-Term Depression in distal ones. In order to understand these, and other, surprising observations we use a phenomenological model of Hebbian plasticity at the location of the synapse. Our model describes the Hebbian condition of joint activity of pre- and postsynaptic neurons in a compact form as the interaction of the glutamate trace left by a presynaptic spike with the time course of the postsynaptic voltage. Instead of simulating the voltage, we test the model using experimentally recorded dendritic voltage traces in hippocampus and neocortex. We find that the time course of the voltage in the neighborhood of a stimulated synapse is a reliable predictor of whether a stimulated synapse undergoes potentiation, depression, or no change. Our computational model can explain the existence of different -at first glance seemingly paradoxical- outcomes of synaptic potentiation and depression experiments depending on the dendritic location of the synapse and the frequency or timing of the stimulation.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"12 ","pages":"585539"},"PeriodicalIF":2.8000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670913/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Synaptic Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsyn.2020.585539","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Experiments have shown that the same stimulation pattern that causes Long-Term Potentiation in proximal synapses, will induce Long-Term Depression in distal ones. In order to understand these, and other, surprising observations we use a phenomenological model of Hebbian plasticity at the location of the synapse. Our model describes the Hebbian condition of joint activity of pre- and postsynaptic neurons in a compact form as the interaction of the glutamate trace left by a presynaptic spike with the time course of the postsynaptic voltage. Instead of simulating the voltage, we test the model using experimentally recorded dendritic voltage traces in hippocampus and neocortex. We find that the time course of the voltage in the neighborhood of a stimulated synapse is a reliable predictor of whether a stimulated synapse undergoes potentiation, depression, or no change. Our computational model can explain the existence of different -at first glance seemingly paradoxical- outcomes of synaptic potentiation and depression experiments depending on the dendritic location of the synapse and the frequency or timing of the stimulation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树突电压记录解释矛盾的突触可塑性:一个模型研究。
实验表明,引起近端突触长时程增强的相同刺激模式,也会引起远端突触长时程抑制。为了理解这些以及其他令人惊讶的观察结果,我们使用了突触位置Hebbian可塑性的现象学模型。我们的模型以紧凑的形式描述了突触前和突触后神经元联合活动的Hebbian条件,作为突触前尖峰留下的谷氨酸痕迹与突触后电压的时间过程的相互作用。我们没有模拟电压,而是使用实验记录的海马和新皮层的树突电压轨迹来测试模型。我们发现,在受刺激的突触附近的电压的时间过程是一个可靠的预测是否受刺激的突触经历增强,抑制,或没有变化。我们的计算模型可以解释突触增强和抑制实验的不同结果——乍一看似乎是矛盾的——取决于突触的树突位置和刺激的频率或时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
2.70%
发文量
74
审稿时长
14 weeks
期刊最新文献
Editorial: Role of protein palmitoylation in synaptic plasticity and neuronal differentiation, volume II. The short-term plasticity of VIP interneurons in motor cortex. Editorial: Regulation of AMPA receptors in brain diseases, from the genetic to the functional level, volume II. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Synaptic plasticity through a naturalistic lens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1