Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Cancer Informatics Pub Date : 2020-11-04 eCollection Date: 2020-01-01 DOI:10.1177/1176935120969692
Mohammed Amine Bendahou, Azeddine Ibrahimi, Mahjouba Boutarbouch
{"title":"Bioinformatics Analysis of Differentially Expressed Genes and miRNAs in Low-Grade Gliomas.","authors":"Mohammed Amine Bendahou,&nbsp;Azeddine Ibrahimi,&nbsp;Mahjouba Boutarbouch","doi":"10.1177/1176935120969692","DOIUrl":null,"url":null,"abstract":"<p><p>Low-grade glioma is the most common type of primary intracranial tumor. In the last 3 years, new observations of molecular precursors in adults with gliomas have led to a modification in the histopathologic classification of these brain tumors. Among the biomarkers that have been highlighted, we have the micro RNAs (miRNAs) which play a crucial role in the regulation of gene expression and the long noncoding RNAs (lncRNAs) controlling various cellular and metabolic pathways. In our study, large-scale data on sequenced RNA and miRNAs from 516 patients were obtained from the Cancer Genome Atlas database by the TCGAbiolinks package. We identified the differential expression of miRNAs and genes using the Limma package and then we used the ClusterProfiler package for annotations of the biological pathways of the expressed genes, the survival package to estimate the survival analysis, and the GDCRNATools package to determine miRNAs-genes and miRNAs-lncRNAs interactions. We obtained a significant correlation between the miRNAs identified and the overall survival of the patients (log-rank <i>P</i> < .05) and we have theoretically proposed a novel network of miRNAs involved in low-grade gliomas, specifically astrocytomas and oligodendrogliomas, which combine both genes and lncRNAs.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"19 ","pages":"1176935120969692"},"PeriodicalIF":2.4000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176935120969692","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1176935120969692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Low-grade glioma is the most common type of primary intracranial tumor. In the last 3 years, new observations of molecular precursors in adults with gliomas have led to a modification in the histopathologic classification of these brain tumors. Among the biomarkers that have been highlighted, we have the micro RNAs (miRNAs) which play a crucial role in the regulation of gene expression and the long noncoding RNAs (lncRNAs) controlling various cellular and metabolic pathways. In our study, large-scale data on sequenced RNA and miRNAs from 516 patients were obtained from the Cancer Genome Atlas database by the TCGAbiolinks package. We identified the differential expression of miRNAs and genes using the Limma package and then we used the ClusterProfiler package for annotations of the biological pathways of the expressed genes, the survival package to estimate the survival analysis, and the GDCRNATools package to determine miRNAs-genes and miRNAs-lncRNAs interactions. We obtained a significant correlation between the miRNAs identified and the overall survival of the patients (log-rank P < .05) and we have theoretically proposed a novel network of miRNAs involved in low-grade gliomas, specifically astrocytomas and oligodendrogliomas, which combine both genes and lncRNAs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低级别胶质瘤差异表达基因和mirna的生物信息学分析。
低级别胶质瘤是最常见的原发性颅内肿瘤类型。在过去的3年里,对成人胶质瘤分子前体的新观察导致了这些脑肿瘤组织病理学分类的改变。在已被重点关注的生物标志物中,我们有在基因表达调控中起关键作用的微rna (miRNAs)和控制各种细胞和代谢途径的长链非编码rna (lncRNAs)。在我们的研究中,通过tcgabiollinks包从癌症基因组图谱数据库中获得了来自516名患者的测序RNA和mirna的大规模数据。我们使用Limma软件包确定了miRNAs和基因的差异表达,然后使用ClusterProfiler软件包对表达基因的生物学途径进行注释,使用survival软件包估计生存分析,使用GDCRNATools软件包确定miRNAs-基因和miRNAs- lncrnas的相互作用。我们发现鉴定的mirna与患者的总生存率之间存在显著相关性(log-rank P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Informatics
Cancer Informatics Medicine-Oncology
CiteScore
3.00
自引率
5.00%
发文量
30
审稿时长
8 weeks
期刊介绍: The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.
期刊最新文献
Cathepsin L in Lung Adenocarcinoma: Prognostic Significance and Immunotherapy Response Through a Multi Omics Perspective. Utilizing an In-silico Approach to Pinpoint Potential Biomarkers for Enhanced Early Detection of Colorectal Cancer. Detecting the Tumor Prognostic Factors From the YTH Domain Family Through Integrative Pan-Cancer Analysis. Unveiling Recurrence Patterns: Analyzing Predictive Risk Factors for Breast Cancer Recurrence after Surgery. Understanding the Biological Basis of Polygenic Risk Scores and Disparities in Prostate Cancer: A Comprehensive Genomic Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1