{"title":"Ten important roles for academic leaders in data science.","authors":"Jason H Moore","doi":"10.1186/s13040-020-00228-5","DOIUrl":null,"url":null,"abstract":"<p><p>Data science has emerged as an important discipline in the era of big data and biological and biomedical data mining. As such, we have seen a rapid increase in the number of data science departments, research centers, and schools. We review here ten important leadership roles for a successful academic data science chair, director, or dean. These roles include the visionary, executive, cheerleader, manager, enforcer, subordinate, educator, entrepreneur, mentor, and communicator. Examples specific to leadership in data science are given for each role.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"13 ","pages":"18"},"PeriodicalIF":4.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13040-020-00228-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-020-00228-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Data science has emerged as an important discipline in the era of big data and biological and biomedical data mining. As such, we have seen a rapid increase in the number of data science departments, research centers, and schools. We review here ten important leadership roles for a successful academic data science chair, director, or dean. These roles include the visionary, executive, cheerleader, manager, enforcer, subordinate, educator, entrepreneur, mentor, and communicator. Examples specific to leadership in data science are given for each role.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.