Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology.

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Arrhythmia & Electrophysiology Review Pub Date : 2020-11-01 DOI:10.15420/aer.2020.26
Rutger R van de Leur, Machteld J Boonstra, Ayoub Bagheri, Rob W Roudijk, Arjan Sammani, Karim Taha, Pieter Afm Doevendans, Pim van der Harst, Peter M van Dam, Rutger J Hassink, René van Es, Folkert W Asselbergs
{"title":"Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology.","authors":"Rutger R van de Leur, Machteld J Boonstra, Ayoub Bagheri, Rob W Roudijk, Arjan Sammani, Karim Taha, Pieter Afm Doevendans, Pim van der Harst, Peter M van Dam, Rutger J Hassink, René van Es, Folkert W Asselbergs","doi":"10.15420/aer.2020.26","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of big data and artificial intelligence (AI) is having an increasing impact on the field of electrophysiology. Algorithms are created to improve the automated diagnosis of clinical ECGs or ambulatory rhythm devices. Furthermore, the use of AI during invasive electrophysiological studies or combining several diagnostic modalities into AI algorithms to aid diagnostics are being investigated. However, the clinical performance and applicability of created algorithms are yet unknown. In this narrative review, opportunities and threats of AI in the field of electrophysiology are described, mainly focusing on ECGs. Current opportunities are discussed with their potential clinical benefits as well as the challenges. Challenges in data acquisition, model performance, (external) validity, clinical implementation, algorithm interpretation as well as the ethical aspects of AI research are discussed. This article aims to guide clinicians in the evaluation of new AI applications for electrophysiology before their clinical implementation.</p>","PeriodicalId":8412,"journal":{"name":"Arrhythmia & Electrophysiology Review","volume":"9 3","pages":"146-154"},"PeriodicalIF":2.6000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/d8/aer-09-146.PMC7675143.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arrhythmia & Electrophysiology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15420/aer.2020.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of big data and artificial intelligence (AI) is having an increasing impact on the field of electrophysiology. Algorithms are created to improve the automated diagnosis of clinical ECGs or ambulatory rhythm devices. Furthermore, the use of AI during invasive electrophysiological studies or combining several diagnostic modalities into AI algorithms to aid diagnostics are being investigated. However, the clinical performance and applicability of created algorithms are yet unknown. In this narrative review, opportunities and threats of AI in the field of electrophysiology are described, mainly focusing on ECGs. Current opportunities are discussed with their potential clinical benefits as well as the challenges. Challenges in data acquisition, model performance, (external) validity, clinical implementation, algorithm interpretation as well as the ethical aspects of AI research are discussed. This article aims to guide clinicians in the evaluation of new AI applications for electrophysiology before their clinical implementation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据和人工智能:电生理学的机遇与威胁。
大数据与人工智能(AI)的结合正在对电生理学领域产生越来越大的影响。创建算法是为了改进临床心电图或非卧床心律设备的自动诊断。此外,在侵入性电生理学研究中使用人工智能或将多种诊断模式结合到人工智能算法中以辅助诊断的方法也在研究之中。然而,所创建算法的临床表现和适用性尚不得而知。在这篇叙述性综述中,阐述了人工智能在电生理学领域的机遇和威胁,主要侧重于心电图。讨论了当前的机遇及其潜在的临床益处和挑战。文章讨论了在数据采集、模型性能、(外部)有效性、临床实施、算法解释以及人工智能研究的伦理方面所面临的挑战。这篇文章旨在指导临床医生在临床应用前评估新的人工智能电生理学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arrhythmia & Electrophysiology Review
Arrhythmia & Electrophysiology Review CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
5.10
自引率
6.70%
发文量
22
审稿时长
7 weeks
期刊最新文献
Association Between Atrial Fibrillation and Long-term Mortality in Acute MI Patients. Incidence, Risk Factors and Predictors of Phantom Shocks in Patients with Implantable Cardioverter Defibrillators: State-of-the-art Review. Dynamic Voltage Mapping of the Post-infarct Ventricular Tachycardia Substrate: A Practical Technique to Help Differentiate Scar from Borderzone Tissue. Left Bundle Branch Block-associated Cardiomyopathy: A New Approach. Stylet-driven Leads or Lumenless Leads for Conduction System Pacing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1