Identifying Mechanisms of Endometriosis-Associated Reduced Fecundity in a Rat Model: Novel Insights toward Understanding Human Infertility.

4区 生物学 Q3 Medicine Advances in Anatomy Embryology and Cell Biology Pub Date : 2020-01-01 DOI:10.1007/978-3-030-51856-1_2
Kathy L Sharpe-Timms, Henda Nabli, Julie A W Stilley
{"title":"Identifying Mechanisms of Endometriosis-Associated Reduced Fecundity in a Rat Model: Novel Insights toward Understanding Human Infertility.","authors":"Kathy L Sharpe-Timms,&nbsp;Henda Nabli,&nbsp;Julie A W Stilley","doi":"10.1007/978-3-030-51856-1_2","DOIUrl":null,"url":null,"abstract":"<p><p>The existence of endometriosis has been known since at least the nineteenth century, yet the lack of understanding of causes of infertility and therefore inadequate treatment approaches in endometriosis creates a significant challenge in reproductive medicine. Women worldwide suffer not only pain and infertility but also economical, societal, and physiological burdens. Studies of reproductive events in women are difficult to conduct due to a host of confounding personal and environmental factors and ethically limited due to the very nature of working with reproductive tissues and cells, especially embryos. Animal models are a viable adjunct to study mechanisms causing human reproductive anomalies and infertility in endometriosis. This chapter discusses reproductive anomalies causing infertility in endometriosis and well-established animal models which help decipher the problems and lead to heretofore unknown nonsurgical, nonhormonal methods to manage endometriosis in women. In addition, studies of effects of developmental exposure to endometriosis are revealing for the first time, in both female and male offspring, transgenerational subfertility in a rat model providing insights into the familial nature of endometriosis and possible epigenetic involvement.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Anatomy Embryology and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/978-3-030-51856-1_2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

The existence of endometriosis has been known since at least the nineteenth century, yet the lack of understanding of causes of infertility and therefore inadequate treatment approaches in endometriosis creates a significant challenge in reproductive medicine. Women worldwide suffer not only pain and infertility but also economical, societal, and physiological burdens. Studies of reproductive events in women are difficult to conduct due to a host of confounding personal and environmental factors and ethically limited due to the very nature of working with reproductive tissues and cells, especially embryos. Animal models are a viable adjunct to study mechanisms causing human reproductive anomalies and infertility in endometriosis. This chapter discusses reproductive anomalies causing infertility in endometriosis and well-established animal models which help decipher the problems and lead to heretofore unknown nonsurgical, nonhormonal methods to manage endometriosis in women. In addition, studies of effects of developmental exposure to endometriosis are revealing for the first time, in both female and male offspring, transgenerational subfertility in a rat model providing insights into the familial nature of endometriosis and possible epigenetic involvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在大鼠模型中识别子宫内膜异位症相关的生育能力降低的机制:对理解人类不孕症的新见解。
子宫内膜异位症的存在至少在19世纪就已为人所知,但由于对不孕的原因缺乏了解,因此对子宫内膜异位症的治疗方法不足,给生殖医学带来了重大挑战。全世界的妇女不仅要忍受疼痛和不孕,还要承受经济、社会和生理上的负担。由于许多混杂的个人和环境因素,对妇女生殖事件的研究很难进行,而且由于研究生殖组织和细胞,特别是胚胎的性质,在伦理上受到限制。动物模型是研究子宫内膜异位症导致人类生殖异常和不孕症机制的可行辅助手段。本章讨论了导致子宫内膜异位症不孕的生殖异常和完善的动物模型,这些模型有助于解释问题,并导致迄今为止未知的非手术、非激素方法来治疗女性子宫内膜异位症。此外,对发育暴露于子宫内膜异位症的影响的研究首次揭示了在雌性和雄性后代中,大鼠模型中的跨代低生育能力,为子宫内膜异位症的家族性和可能的表观遗传参与提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊介绍: "Advances in Anatomy, Embryology and Cell Biology" presents critical reviews on all topical fields of normal and experimental anatomy including cell biology. The multi-perspective presentation of morphological aspects of basic biological phenomen in the human constitutes the main focus of the series. The contributions re-evaluate the latest findings and show ways for further research.
期刊最新文献
Epididymosomes: Composition and Functions for Sperm Maturation. Seminal Vesicle-Derived Exosomes for the Regulation of Sperm Activity. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? Mechanisms of DNA Damage Response in Mammalian Oocytes. Molecular Mechanisms Determining Mammalian Oocyte Quality with the Treatment of Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1