{"title":"A Modified Phase Cycling Method for Complex-Valued MRI Reconstruction.","authors":"Wei He, Yu Zhang, Junling Ding, Linman Zhao","doi":"10.1155/2020/8846220","DOIUrl":null,"url":null,"abstract":"<p><p>The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to \"pre-process\" the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8846220","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8846220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to "pre-process" the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics