Development, Screening, and Validation of Camelid-Derived Nanobodies for Neuroscience Research
Clara E. Gavira-O'Neill, Jie-Xian Dong, James S. Trimmer
下载PDF
{"title":"Development, Screening, and Validation of Camelid-Derived Nanobodies for Neuroscience Research","authors":"Clara E. Gavira-O'Neill, Jie-Xian Dong, James S. Trimmer","doi":"10.1002/cpns.107","DOIUrl":null,"url":null,"abstract":"<p>Nanobodies (nAbs) are recombinant antigen-binding variable domain fragments obtained from heavy-chain-only immunoglobulins. Among mammals, these are unique to camelids (camels, llamas, alpacas, etc.). Nanobodies are of great use in biomedical research due to their efficient folding and stability under a variety of conditions, as well as their small size. The latter characteristic is particularly important for nAbs used as immunolabeling reagents, since this can improve penetration of cell and tissue samples compared to conventional antibodies, and also reduce the gap distance between signal and target, thereby improving imaging resolution. In addition, their recombinant nature allows for unambiguous definition and permanent archiving in the form of DNA sequence, enhanced distribution in the form of sequences or plasmids, and easy and inexpensive production using well-established bacterial expression systems, such as the IPTG induction method described here. This article will review the basic workflow and process for developing, screening, and validating novel nAbs against neuronal target proteins. The protocols described make use of the most common nAb development method, wherein an immune repertoire from an immunized llama is screened via phage display technology. Selected nAbs can then be taken through validation assays for use as immunolabels or as intrabodies in neurons. © 2020 Wiley Periodicals LLC.</p><p>This article was corrected on 26 June 2021. See the end of the full text for details.</p><p><b>Basic Protocol 1</b>: Total RNA isolation from camelid leukocytes</p><p><b>Basic Protocol 2</b>: First-strand cDNA synthesis; V<sub>H</sub>H and V<sub>H</sub> repertoire PCR</p><p><b>Basic Protocol 3</b>: Preparation of the phage display library</p><p><b>Basic Protocol 4</b>: Panning of the phage display library</p><p><b>Basic Protocol 5</b>: Small-scale nAb expression</p><p><b>Basic Protocol 6</b>: Sequence analysis of selected nAb clones</p><p><b>Basic Protocol 7</b>: Nanobody validation as immunolabels</p><p><b>Basic Protocol 8</b>: Generation of nAb-pEGFP mammalian expression constructs</p><p><b>Basic Protocol 9</b>: Nanobody validation as intrabodies</p><p><b>Support Protocol 1</b>: ELISA for llama serum testing, phage titer, and screening of selected clones</p><p><b>Support Protocol 2</b>: Amplification of helper phage stock</p><p><b>Support Protocol 3</b>: nAb expression in amber suppressor <i>E. coli</i> bacterial strains</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.107","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpns.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 3
引用
批量引用
Abstract
Nanobodies (nAbs) are recombinant antigen-binding variable domain fragments obtained from heavy-chain-only immunoglobulins. Among mammals, these are unique to camelids (camels, llamas, alpacas, etc.). Nanobodies are of great use in biomedical research due to their efficient folding and stability under a variety of conditions, as well as their small size. The latter characteristic is particularly important for nAbs used as immunolabeling reagents, since this can improve penetration of cell and tissue samples compared to conventional antibodies, and also reduce the gap distance between signal and target, thereby improving imaging resolution. In addition, their recombinant nature allows for unambiguous definition and permanent archiving in the form of DNA sequence, enhanced distribution in the form of sequences or plasmids, and easy and inexpensive production using well-established bacterial expression systems, such as the IPTG induction method described here. This article will review the basic workflow and process for developing, screening, and validating novel nAbs against neuronal target proteins. The protocols described make use of the most common nAb development method, wherein an immune repertoire from an immunized llama is screened via phage display technology. Selected nAbs can then be taken through validation assays for use as immunolabels or as intrabodies in neurons. © 2020 Wiley Periodicals LLC.
This article was corrected on 26 June 2021. See the end of the full text for details.
Basic Protocol 1 : Total RNA isolation from camelid leukocytes
Basic Protocol 2 : First-strand cDNA synthesis; VH H and VH repertoire PCR
Basic Protocol 3 : Preparation of the phage display library
Basic Protocol 4 : Panning of the phage display library
Basic Protocol 5 : Small-scale nAb expression
Basic Protocol 6 : Sequence analysis of selected nAb clones
Basic Protocol 7 : Nanobody validation as immunolabels
Basic Protocol 8 : Generation of nAb-pEGFP mammalian expression constructs
Basic Protocol 9 : Nanobody validation as intrabodies
Support Protocol 1 : ELISA for llama serum testing, phage titer, and screening of selected clones
Support Protocol 2 : Amplification of helper phage stock
Support Protocol 3 : nAb expression in amber suppressor E. coli bacterial strains
用于神经科学研究的骆驼源纳米体的开发、筛选和验证
纳米体是重组抗原结合可变结构域片段,从纯重链免疫球蛋白中获得。在哺乳动物中,这些是骆驼科动物(骆驼、大羊驼、羊驼等)所特有的。纳米体由于其在各种条件下的高效折叠和稳定性,以及它们的小尺寸,在生物医学研究中有很大的应用。后一种特性对于用作免疫标记试剂的nab尤为重要,因为与常规抗体相比,这可以提高细胞和组织样品的穿透性,并且还可以减少信号和靶标之间的间隙距离,从而提高成像分辨率。此外,它们的重组性质允许以DNA序列的形式进行明确的定义和永久存档,以序列或质粒的形式增强分布,以及使用完善的细菌表达系统(如本文描述的IPTG诱导方法)轻松廉价地生产。本文将回顾开发、筛选和验证针对神经元靶蛋白的新型nab的基本工作流程和过程。所描述的方案利用了最常见的nAb开发方法,其中通过噬菌体展示技术筛选来自免疫骆驼的免疫库。然后,选定的nab可以通过验证试验作为免疫标记或作为神经元中的体内抗体。©2020 Wiley Periodicals llc .本文于2021年6月26日更正。详情见全文末尾。基本方案1:从骆驼白细胞中分离总RNA基本方案2:第一链cDNA合成;VHH和VH库pcr基本方案3:噬菌体展示库的制备基本方案4:噬菌体展示库的规划基本方案5:小规模nAb表达基本方案6:选定nAb克隆的序列分析基本方案7:纳米体作为免疫标签的验证基本方案8:nAb- pegfp哺乳动物表达构建的生成基本方案9:纳米体作为体内体的验证支持方案1:ELISA用于羊驼血清检测、噬菌体滴度和选定克隆的筛选支持方案2:辅助噬菌体的扩增支持方案3:琥珀色抑制大肠杆菌菌株nAb的表达
本文章由计算机程序翻译,如有差异,请以英文原文为准。