Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, Fei Wang
{"title":"Federated Learning for Healthcare Informatics.","authors":"Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, Fei Wang","doi":"10.1007/s41666-020-00082-4","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of computer software and hardware technologies, more and more healthcare data are becoming readily available from clinical institutions, patients, insurance companies, and pharmaceutical industries, among others. This access provides an unprecedented opportunity for data science technologies to derive data-driven insights and improve the quality of care delivery. Healthcare data, however, are usually fragmented and private making it difficult to generate robust results across populations. For example, different hospitals own the electronic health records (EHR) of different patient populations and these records are difficult to share across hospitals because of their sensitive nature. This creates a big barrier for developing effective analytical approaches that are generalizable, which need diverse, \"big data.\" Federated learning, a mechanism of training a shared global model with a central server while keeping all the sensitive data in local institutions where the data belong, provides great promise to connect the fragmented healthcare data sources with privacy-preservation. The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space. In particular, we summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated learning, and point out the implications and potentials in healthcare.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":"5 1","pages":"1-19"},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-020-00082-4","citationCount":"559","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-020-00082-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 559
Abstract
With the rapid development of computer software and hardware technologies, more and more healthcare data are becoming readily available from clinical institutions, patients, insurance companies, and pharmaceutical industries, among others. This access provides an unprecedented opportunity for data science technologies to derive data-driven insights and improve the quality of care delivery. Healthcare data, however, are usually fragmented and private making it difficult to generate robust results across populations. For example, different hospitals own the electronic health records (EHR) of different patient populations and these records are difficult to share across hospitals because of their sensitive nature. This creates a big barrier for developing effective analytical approaches that are generalizable, which need diverse, "big data." Federated learning, a mechanism of training a shared global model with a central server while keeping all the sensitive data in local institutions where the data belong, provides great promise to connect the fragmented healthcare data sources with privacy-preservation. The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space. In particular, we summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated learning, and point out the implications and potentials in healthcare.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis