The promotive effect of activation of the Akt/mTOR/p70S6K signaling pathway in oligodendrocytes on nerve myelin regeneration in rats with spinal cord injury.
{"title":"The promotive effect of activation of the Akt/mTOR/p70S6K signaling pathway in oligodendrocytes on nerve myelin regeneration in rats with spinal cord injury.","authors":"Chen Ge, Dong Liu, Yongming Sun","doi":"10.1080/02688697.2020.1862056","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Akt/mTOR/p70S6K signaling pathway promotes motor function recovery after spinal cord injury (SCI) in both neurons and astrocytes. But the role and mechanism of this pathway in oligodendrocytes during nerve repair following SCI has not been researched. This study aimed to investigate the effect and mechanism of this signaling pathway in oligodendrocytes on nerve myelin regeneration and motor function recovery in rats with SCI.</p><p><strong>Methods: </strong>After inhibiting or activating this signaling pathway, Western blotting and double immunofluorescence labeling were used to determine the levels of the signaling molecules in this pathway and myelin formation-related proteins in the plane of the thoracic segment of the injured spinal cord. The level of motor function recovery was evaluated and the oligodendrocytes involved in nerve myelin regeneration were studied. Primary oligodendrocytes were isolated and cultured <i>in vitro,</i> then MBP, PLP, and MOG were measured with reverse transcription-quantitative polymerase chain reaction (RT-qPCR).</p><p><strong>Results: </strong>Akt/mTOR/p70S6K signaling pathway was activated after SCI compared with the sham-operated rats, prominently elevated levels of the pathway components were observed in the SC79-treated group. The activation of the signaling pathway significantly increased the expression levels of myelin formation-related proteins, including MBP, PLP, and MOG, and improved the Basso, Beattie, and Bresnahan (BBB) scores in the injured spinal cord. Conversely, rapamycin suppressed the expression of these signaling molecules and reduced the levels of myelin formation-related proteins.</p><p><strong>Conclusion: </strong>Akt/mTOR/p70S6K signaling pathway activation can contribute to nerve myelin regeneration and has the potential to improve the regenerative environment and motor function, as well as the potential to promote repair of SCI.</p>","PeriodicalId":9261,"journal":{"name":"British Journal of Neurosurgery","volume":" ","pages":"284-292"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02688697.2020.1862056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Akt/mTOR/p70S6K signaling pathway promotes motor function recovery after spinal cord injury (SCI) in both neurons and astrocytes. But the role and mechanism of this pathway in oligodendrocytes during nerve repair following SCI has not been researched. This study aimed to investigate the effect and mechanism of this signaling pathway in oligodendrocytes on nerve myelin regeneration and motor function recovery in rats with SCI.
Methods: After inhibiting or activating this signaling pathway, Western blotting and double immunofluorescence labeling were used to determine the levels of the signaling molecules in this pathway and myelin formation-related proteins in the plane of the thoracic segment of the injured spinal cord. The level of motor function recovery was evaluated and the oligodendrocytes involved in nerve myelin regeneration were studied. Primary oligodendrocytes were isolated and cultured in vitro, then MBP, PLP, and MOG were measured with reverse transcription-quantitative polymerase chain reaction (RT-qPCR).
Results: Akt/mTOR/p70S6K signaling pathway was activated after SCI compared with the sham-operated rats, prominently elevated levels of the pathway components were observed in the SC79-treated group. The activation of the signaling pathway significantly increased the expression levels of myelin formation-related proteins, including MBP, PLP, and MOG, and improved the Basso, Beattie, and Bresnahan (BBB) scores in the injured spinal cord. Conversely, rapamycin suppressed the expression of these signaling molecules and reduced the levels of myelin formation-related proteins.
Conclusion: Akt/mTOR/p70S6K signaling pathway activation can contribute to nerve myelin regeneration and has the potential to improve the regenerative environment and motor function, as well as the potential to promote repair of SCI.
期刊介绍:
The British Journal of Neurosurgery is a leading international forum for debate in the field of neurosurgery, publishing original peer-reviewed articles of the highest quality, along with comment and correspondence on all topics of current interest to neurosurgeons worldwide.
Coverage includes all aspects of case assessment and surgical practice, as well as wide-ranging research, with an emphasis on clinical rather than experimental material. Special emphasis is placed on postgraduate education with review articles on basic neurosciences and on the theory behind advances in techniques, investigation and clinical management. All papers are submitted to rigorous and independent peer-review, ensuring the journal’s wide citation and its appearance in the major abstracting and indexing services.