Practical considerations for active machine learning in drug discovery

Q1 Pharmacology, Toxicology and Pharmaceutics Drug Discovery Today: Technologies Pub Date : 2019-12-01 DOI:10.1016/j.ddtec.2020.06.001
Daniel Reker
{"title":"Practical considerations for active machine learning in drug discovery","authors":"Daniel Reker","doi":"10.1016/j.ddtec.2020.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Active machine learning enables the automated selection of the most valuable next experiments to improve predictive modelling and hasten active retrieval in </span>drug discovery. Although a long established theoretical concept and introduced to drug discovery approximately 15 years ago, the deployment of active learning technology in the discovery pipelines across academia and industry remains slow. With the recent re-discovered enthusiasm for artificial intelligence as well as improved flexibility of laboratory automation, active learning is expected to surge and become a key technology for molecular optimizations. This review recapitulates key findings from previous active learning studies to highlight the challenges and opportunities of applying adaptive machine learning to drug discovery. Specifically, considerations regarding implementation, infrastructural integration, and expected benefits are discussed. By focusing on these practical aspects of active learning, this review aims at providing insights for scientists planning to implement active learning workflows in their discovery pipelines.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 73-79"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.06.001","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 39

Abstract

Active machine learning enables the automated selection of the most valuable next experiments to improve predictive modelling and hasten active retrieval in drug discovery. Although a long established theoretical concept and introduced to drug discovery approximately 15 years ago, the deployment of active learning technology in the discovery pipelines across academia and industry remains slow. With the recent re-discovered enthusiasm for artificial intelligence as well as improved flexibility of laboratory automation, active learning is expected to surge and become a key technology for molecular optimizations. This review recapitulates key findings from previous active learning studies to highlight the challenges and opportunities of applying adaptive machine learning to drug discovery. Specifically, considerations regarding implementation, infrastructural integration, and expected benefits are discussed. By focusing on these practical aspects of active learning, this review aims at providing insights for scientists planning to implement active learning workflows in their discovery pipelines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动机器学习在药物发现中的实际考虑
主动机器学习能够自动选择最有价值的下一个实验,以改进预测建模并加速药物发现中的主动检索。虽然早在15年前,主动学习技术就被引入到药物研发中,但在学术界和工业界的研发管道中,主动学习技术的部署仍然缓慢。随着最近人们对人工智能的重新热情以及实验室自动化灵活性的提高,主动学习有望激增,并成为分子优化的关键技术。本文概述了以前主动学习研究的主要发现,以强调将自适应机器学习应用于药物发现的挑战和机遇。具体地说,讨论了有关实现、基础设施集成和预期收益的注意事项。通过关注主动学习的这些实际方面,本综述旨在为计划在其发现管道中实施主动学习工作流程的科学家提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
期刊最新文献
Proteomics advances towards developing SARS-CoV-2 therapeutics using in silico drug repurposing approaches Application of proteomic data in the translation of in vitro observations to associated clinical outcomes Advances in sample preparation for membrane proteome quantification Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1