Semaya Natalia Chen, Prabhakar Ramachandran, Pradip Deb
{"title":"Dosimetric comparative study of 3DCRT, IMRT, VMAT, Ecomp, and Hybrid techniques for breast radiation therapy.","authors":"Semaya Natalia Chen, Prabhakar Ramachandran, Pradip Deb","doi":"10.3857/roj.2020.00619","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess and compare the dosimetric parameters obtained between three-dimensional conformal radiotherapy (3DCRT), three-dimensional field-in-field (3DFIF), 5-field intensity-modulated radiotherapy (IMRT MF5), tangential IMRT (tIMRT), tangential volumetric modulated arc therapy (tVMAT), electronic tissue compensation (Ecomp), and Hybrid treatment plans.</p><p><strong>Materials and methods: </strong>Thirty planning computed tomography datasets obtained from patients previously treated with whole breast radiation therapy (WBRT) were utilized in this study. Treatment plans were created for 3DCRT, 3DFIF, IMRT MF5, tIMRT, tVMAT, Ecomp, and Hybrid techniques using Eclipse Treatment Planning System (version 13.6) with a prescribed dose of 42.5 Gy in 16 fractions.</p><p><strong>Results: </strong>Techniques with tangential beams produced statistically significantly better organs-at-risk (OARs) dosimetry (p < 0.001). Planning target volume Homogeneity Index (HI) was found to be significantly different among all techniques (p < 0.001), with Ecomp resulting in better HI (1.061 ± 0.029). Ecomp was also observed to require relatively shorter planning time (p < 0.001).</p><p><strong>Conclusions: </strong>Techniques using tangential fields arrangements produced improved OARs dosimetry. Of all the treatment planning techniques employed in this study, Ecomp was found to be relatively easy to plan and produce acceptable dosimetry for WBRT in a short time.</p>","PeriodicalId":46572,"journal":{"name":"Radiation Oncology Journal","volume":"38 4","pages":"270-281"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/7c/roj-2020-00619.PMC7785843.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Oncology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3857/roj.2020.00619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 14
Abstract
Purpose: To assess and compare the dosimetric parameters obtained between three-dimensional conformal radiotherapy (3DCRT), three-dimensional field-in-field (3DFIF), 5-field intensity-modulated radiotherapy (IMRT MF5), tangential IMRT (tIMRT), tangential volumetric modulated arc therapy (tVMAT), electronic tissue compensation (Ecomp), and Hybrid treatment plans.
Materials and methods: Thirty planning computed tomography datasets obtained from patients previously treated with whole breast radiation therapy (WBRT) were utilized in this study. Treatment plans were created for 3DCRT, 3DFIF, IMRT MF5, tIMRT, tVMAT, Ecomp, and Hybrid techniques using Eclipse Treatment Planning System (version 13.6) with a prescribed dose of 42.5 Gy in 16 fractions.
Results: Techniques with tangential beams produced statistically significantly better organs-at-risk (OARs) dosimetry (p < 0.001). Planning target volume Homogeneity Index (HI) was found to be significantly different among all techniques (p < 0.001), with Ecomp resulting in better HI (1.061 ± 0.029). Ecomp was also observed to require relatively shorter planning time (p < 0.001).
Conclusions: Techniques using tangential fields arrangements produced improved OARs dosimetry. Of all the treatment planning techniques employed in this study, Ecomp was found to be relatively easy to plan and produce acceptable dosimetry for WBRT in a short time.