{"title":"ALeRT-COVID: Attentive Lockdown-awaRe Transfer Learning for Predicting COVID-19 Pandemics in Different Countries.","authors":"Yingxue Li, Wenxiao Jia, Junmei Wang, Jianying Guo, Qin Liu, Xiang Li, Guotong Xie, Fei Wang","doi":"10.1007/s41666-020-00088-y","DOIUrl":null,"url":null,"abstract":"<p><p>Countries across the world are in different stages of COVID-19 trajectory, among which many have implemented lockdown measures to prevent its spread. Although the lockdown is effective in such prevention, it may put the economy into a depression. Predicting the epidemic progression with the government switching the lockdown on or off is critical. We propose a transfer learning approach called ALeRT-COVID using attention-based recurrent neural network (RNN) architecture to predict the epidemic trends for different countries. A source model was trained on the pre-defined source countries and then transferred to each target country. The lockdown measure was introduced to our model as a predictor and the attention mechanism was utilized to learn the different contributions of the confirmed cases in the past days to the future trend. Results demonstrated that the transfer learning strategy is helpful especially for early-stage countries. By introducing the lockdown predictor and the attention mechanism, ALeRT-COVID showed a significant improvement in the prediction performance. We predicted the confirmed cases in 1 week when extending and easing lockdown separately. Our results show that lockdown measures are still necessary for several countries. We expect our research can help different countries to make better decisions on the lockdown measures.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":"5 1","pages":"98-113"},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-020-00088-y","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-020-00088-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 13
Abstract
Countries across the world are in different stages of COVID-19 trajectory, among which many have implemented lockdown measures to prevent its spread. Although the lockdown is effective in such prevention, it may put the economy into a depression. Predicting the epidemic progression with the government switching the lockdown on or off is critical. We propose a transfer learning approach called ALeRT-COVID using attention-based recurrent neural network (RNN) architecture to predict the epidemic trends for different countries. A source model was trained on the pre-defined source countries and then transferred to each target country. The lockdown measure was introduced to our model as a predictor and the attention mechanism was utilized to learn the different contributions of the confirmed cases in the past days to the future trend. Results demonstrated that the transfer learning strategy is helpful especially for early-stage countries. By introducing the lockdown predictor and the attention mechanism, ALeRT-COVID showed a significant improvement in the prediction performance. We predicted the confirmed cases in 1 week when extending and easing lockdown separately. Our results show that lockdown measures are still necessary for several countries. We expect our research can help different countries to make better decisions on the lockdown measures.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis