{"title":"Arginine: A Weapon against Cariogenic Biofilm?","authors":"Sigrun Eick, Adrian Lussi","doi":"10.1159/000510203","DOIUrl":null,"url":null,"abstract":"<p><p>Untreated dental caries is the most prevalent disease worldwide. Development of caries is associated with the intake of sugar. The microorganisms utilize the sugar and create an acidic environment, which results in mineral loss. The appropriate use of fluoride is associated with a decline of caries. Another approach in preventing caries might be the increase of pH in dental plaque. During recent years, arginine has increasingly become the focus of interest. This is based on the fact that certain streptococci possess an arginine deiminase system (ADS) which metabolizes free arginine. In vivo, the incidence of caries was inversely correlated with ADS activity in saliva and dental plaque. ADS is highly active in Streptococcus gordonii and S. sanguinis, but is absent in S. sobrinus and S. mutans. In the presence of 1.5% L-arginine, S. gordonii and S. sanguinis, but not S. mutans and S. sobrinus, synthesize the metabolite citrulline and increase the pH of the environment.In defined multispecies biofilms consisting of ADS-positive and ADS-negative streptococci, supplementation with 1.5% arginine suppressed the growth of ADS-negative by favoring ADS-positive streptococci together with an increase in the pH of the environment. Evaluating the influence of daily manual removal of the biofilm in vitro by brushing with a commercial toothpaste containing fluoride and arginine resulted in less surface microhardness even when compared with a toothpaste with fluoride only. Recent studies clinically investigated the effect of using an arginine-containing dentifrice and reported a decrease of DMFS by about 10-20%.</p>","PeriodicalId":35771,"journal":{"name":"Monographs in Oral Science","volume":"29 ","pages":"80-90"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs in Oral Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000510203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 6
Abstract
Untreated dental caries is the most prevalent disease worldwide. Development of caries is associated with the intake of sugar. The microorganisms utilize the sugar and create an acidic environment, which results in mineral loss. The appropriate use of fluoride is associated with a decline of caries. Another approach in preventing caries might be the increase of pH in dental plaque. During recent years, arginine has increasingly become the focus of interest. This is based on the fact that certain streptococci possess an arginine deiminase system (ADS) which metabolizes free arginine. In vivo, the incidence of caries was inversely correlated with ADS activity in saliva and dental plaque. ADS is highly active in Streptococcus gordonii and S. sanguinis, but is absent in S. sobrinus and S. mutans. In the presence of 1.5% L-arginine, S. gordonii and S. sanguinis, but not S. mutans and S. sobrinus, synthesize the metabolite citrulline and increase the pH of the environment.In defined multispecies biofilms consisting of ADS-positive and ADS-negative streptococci, supplementation with 1.5% arginine suppressed the growth of ADS-negative by favoring ADS-positive streptococci together with an increase in the pH of the environment. Evaluating the influence of daily manual removal of the biofilm in vitro by brushing with a commercial toothpaste containing fluoride and arginine resulted in less surface microhardness even when compared with a toothpaste with fluoride only. Recent studies clinically investigated the effect of using an arginine-containing dentifrice and reported a decrease of DMFS by about 10-20%.
期刊介绍:
For two decades, ‘Monographs in Oral Science’ has provided a source of in-depth discussion of selected topics in the sciences related to stomatology. Senior investigators are invited to present expanded contributions in their fields of special expertise. The topics chosen are those which have generated a long-standing interest, and on which new conceptual insights or innovative biotechnology are making considerable impact. Authors are selected on the basis of having made lasting contributions to their chosen field and their willingness to share their findings with others.