ZnO nanoarrays via a thermal decomposition–deposition method for sensitive and selective NO2 detection†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2021-04-21 DOI:10.1039/D1CE00410G
Chengming Lou, Kai Wang, Houshan Mei, Jiayue Xie, Wei Zheng, Xianghong Liu and Jun Zhang
{"title":"ZnO nanoarrays via a thermal decomposition–deposition method for sensitive and selective NO2 detection†","authors":"Chengming Lou, Kai Wang, Houshan Mei, Jiayue Xie, Wei Zheng, Xianghong Liu and Jun Zhang","doi":"10.1039/D1CE00410G","DOIUrl":null,"url":null,"abstract":"<p >Metal oxide semiconductor (MOS) nanoarrays are excellent candidates as the sensing layers in electronic gas sensors as a result of their high surface-to-volume ratio and loose structure compared with particle-aggregated films. In this work, we develop a simple yet efficient <em>in situ</em> thermal decomposition–deposition (TDD) strategy that is capable of growing ZnO nanoarrays for mass production of gas sensors. The ZnO nanoarrays are self-assembled as ZnO nanowires with a preferential growth direction of (002). Gas sensing measurements reveal that the sensors based on ZnO nanoarrays exhibit remarkable sensitivity and selectivity toward NO<small><sub>2</sub></small> detection at a low operating temperature of 140 °C. The ZnO sensor displays very high response (<em>R</em><small><sub>g</sub></small>/<em>R</em><small><sub>a</sub></small> = 85) and fast response (6 s) and recovery (30 s) times for 10 ppm NO<small><sub>2</sub></small>, as well as a low limit of detection of 14 ppb. In addition, the sensor also possesses a notable humidity-resistant response. When the relative humidity increases from 60% to 85%, the sensor response is slightly decreased by 11.8% (from 85 to 75). The facile synthesis strategy and the ZnO nanoarray structure developed in this work are highly promising for practical sensor applications owing to the low fabrication cost and attractive anti-humidity sensing performance.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D1CE00410G","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/ce/d1ce00410g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 28

Abstract

Metal oxide semiconductor (MOS) nanoarrays are excellent candidates as the sensing layers in electronic gas sensors as a result of their high surface-to-volume ratio and loose structure compared with particle-aggregated films. In this work, we develop a simple yet efficient in situ thermal decomposition–deposition (TDD) strategy that is capable of growing ZnO nanoarrays for mass production of gas sensors. The ZnO nanoarrays are self-assembled as ZnO nanowires with a preferential growth direction of (002). Gas sensing measurements reveal that the sensors based on ZnO nanoarrays exhibit remarkable sensitivity and selectivity toward NO2 detection at a low operating temperature of 140 °C. The ZnO sensor displays very high response (Rg/Ra = 85) and fast response (6 s) and recovery (30 s) times for 10 ppm NO2, as well as a low limit of detection of 14 ppb. In addition, the sensor also possesses a notable humidity-resistant response. When the relative humidity increases from 60% to 85%, the sensor response is slightly decreased by 11.8% (from 85 to 75). The facile synthesis strategy and the ZnO nanoarray structure developed in this work are highly promising for practical sensor applications owing to the low fabrication cost and attractive anti-humidity sensing performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热分解-沉积法制备ZnO纳米阵列,用于灵敏和选择性的NO2检测
金属氧化物半导体(MOS)纳米阵列具有高的表面体积比和较松散的结构,是电子气体传感器传感层的理想候选者。在这项工作中,我们开发了一种简单而高效的原位热分解沉积(TDD)策略,该策略能够生长用于大规模生产气体传感器的ZnO纳米阵列。ZnO纳米阵列自组装成ZnO纳米线,优先生长方向为(002)。气敏测量结果表明,在140℃的低温下,基于ZnO纳米阵列的传感器对NO2的检测具有显著的灵敏度和选择性。ZnO传感器在10 ppm NO2下具有很高的响应(Rg/Ra = 85)、快速响应(6 s)和恢复(30 s)时间,以及14 ppb的低检测限。此外,该传感器还具有显著的抗湿响应。当相对湿度从60%增加到85%时,传感器响应略有下降11.8%(从85增加到75)。由于制造成本低、抗湿度传感性能好,本研究开发的简便合成策略和ZnO纳米阵列结构在实际传感器应用中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Self-assembly of Cu-glutathione nanoparticles on WO3 nanorods: amelioration of charge transfer and photocatalytic performance Back cover Expression of concern: Designing novel morphologies of l-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1