{"title":"Pandemic Equation for Describing and Predicting COVID19 Evolution.","authors":"Michael Shur","doi":"10.1007/s41666-020-00084-2","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this work is to describe the dynamics of the COVID-19 pandemics accounting for the mitigation measures, for the introduction or removal of the quarantine, and for the effect of vaccination when and if introduced. The methods used include the derivation of the Pandemic Equation describing the mitigation measures via the evolution of the growth time constant in the Pandemic Equation resulting in an asymmetric pandemic curve with a steeper rise than a decrease and mitigation measures. The Pandemic Equation predicts how the quarantine removal and business opening lead to a spike in the pandemic curve. The effective vaccination reduces the new daily infections predicted by the Pandemic Equation. The pandemic curves in many localities have similar time dependencies but shifted in time. The Pandemic Equation parameters extracted from the well advanced pandemic curves can be used for predicting the pandemic evolution in the localities, where the pandemics is still in the initial stages. Using the multiple pandemic locations for the parameter extraction allows for the uncertainty quantification in predicting the pandemic evolution using the introduced Pandemic Equation. Compared with other pandemic models our approach allows for easier parameter extraction amenable to using Artificial Intelligence models.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-020-00084-2","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-020-00084-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6
Abstract
The purpose of this work is to describe the dynamics of the COVID-19 pandemics accounting for the mitigation measures, for the introduction or removal of the quarantine, and for the effect of vaccination when and if introduced. The methods used include the derivation of the Pandemic Equation describing the mitigation measures via the evolution of the growth time constant in the Pandemic Equation resulting in an asymmetric pandemic curve with a steeper rise than a decrease and mitigation measures. The Pandemic Equation predicts how the quarantine removal and business opening lead to a spike in the pandemic curve. The effective vaccination reduces the new daily infections predicted by the Pandemic Equation. The pandemic curves in many localities have similar time dependencies but shifted in time. The Pandemic Equation parameters extracted from the well advanced pandemic curves can be used for predicting the pandemic evolution in the localities, where the pandemics is still in the initial stages. Using the multiple pandemic locations for the parameter extraction allows for the uncertainty quantification in predicting the pandemic evolution using the introduced Pandemic Equation. Compared with other pandemic models our approach allows for easier parameter extraction amenable to using Artificial Intelligence models.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis