Circadian rhythms and the HPA axis: A systems view.

IF 4.6 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL WIREs Mechanisms of Disease Pub Date : 2021-07-01 Epub Date: 2021-01-12 DOI:10.1002/wsbm.1518
Ioannis P Androulakis
{"title":"Circadian rhythms and the HPA axis: A systems view.","authors":"Ioannis P Androulakis","doi":"10.1002/wsbm.1518","DOIUrl":null,"url":null,"abstract":"<p><p>The circadian timing system comprises a network of time-keeping clocks distributed across a living host whose responsibility is to allocate resources and distribute functions temporally to optimize fitness. The molecular structures generating these rhythms have evolved to accommodate the rotation of the earth in an attempt to primarily match the light/dark periods during the 24-hr day. To maintain synchrony of timing across and within tissues, information from the central clock, located in the suprachiasmatic nucleus, is conveyed using systemic signals. Leading among those signals are endocrine hormones, and while the hypothalamic-pituitary-adrenal axis through the release of glucocorticoids is a major pacesetter. Interestingly, the fundamental units at the molecular and physiological scales that generate local and systemic signals share critical structural properties. These properties enable time-keeping systems to generate rhythmic signals and allow them to adopt specific properties as they interact with each other and the external environment. The purpose of this review is to provide a broad overview of these structures, discuss their functional characteristics, and describe some of their fundamental properties as these related to health and disease. This article is categorized under: Immune System Diseases > Computational Models Immune System Diseases > Biomedical Engineering.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"13 4","pages":"e1518"},"PeriodicalIF":4.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1518","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1518","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 11

Abstract

The circadian timing system comprises a network of time-keeping clocks distributed across a living host whose responsibility is to allocate resources and distribute functions temporally to optimize fitness. The molecular structures generating these rhythms have evolved to accommodate the rotation of the earth in an attempt to primarily match the light/dark periods during the 24-hr day. To maintain synchrony of timing across and within tissues, information from the central clock, located in the suprachiasmatic nucleus, is conveyed using systemic signals. Leading among those signals are endocrine hormones, and while the hypothalamic-pituitary-adrenal axis through the release of glucocorticoids is a major pacesetter. Interestingly, the fundamental units at the molecular and physiological scales that generate local and systemic signals share critical structural properties. These properties enable time-keeping systems to generate rhythmic signals and allow them to adopt specific properties as they interact with each other and the external environment. The purpose of this review is to provide a broad overview of these structures, discuss their functional characteristics, and describe some of their fundamental properties as these related to health and disease. This article is categorized under: Immune System Diseases > Computational Models Immune System Diseases > Biomedical Engineering.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
昼夜节律和HPA轴:一个系统的观点。
昼夜节律计时系统包括一个分布在活体宿主体内的计时时钟网络,其职责是分配资源和分配功能,以优化适应性。产生这些节律的分子结构已经进化到适应地球的自转,试图在24小时的一天中主要匹配光明/黑暗时期。为了保持组织间和组织内的时间同步,来自位于视交叉上核的中央时钟的信息通过系统信号传递。这些信号中最主要的是内分泌激素,而下丘脑-垂体-肾上腺轴通过释放糖皮质激素是一个主要的领跑者。有趣的是,在分子和生理尺度上产生局部和系统信号的基本单位共享关键的结构特性。这些特性使计时系统能够产生有节奏的信号,并允许它们在与彼此和外部环境相互作用时采用特定的特性。本综述的目的是提供这些结构的广泛概述,讨论它们的功能特征,并描述它们的一些基本特性,因为这些与健康和疾病有关。本文分类如下:免疫系统疾病>计算模型免疫系统疾病>生物医学工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WIREs Mechanisms of Disease
WIREs Mechanisms of Disease MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
11.40
自引率
0.00%
发文量
45
期刊最新文献
Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. Advances in understanding immune homeostasis in latent tuberculosis infection. SLC40A1 in iron metabolism, ferroptosis, and disease: A review. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. Ascomycetes yeasts: The hidden part of human microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1