Bisoprolol: A comprehensive profile.

Q1 Pharmacology, Toxicology and Pharmaceutics Profiles of drug substances, excipients, and related methodology Pub Date : 2021-01-01 Epub Date: 2020-09-08 DOI:10.1016/bs.podrm.2020.07.006
Ahmed H Bakheit, Raisuddin Ali, Ali D Alshahrani, Adel S El-Azab
{"title":"Bisoprolol: A comprehensive profile.","authors":"Ahmed H Bakheit,&nbsp;Raisuddin Ali,&nbsp;Ali D Alshahrani,&nbsp;Adel S El-Azab","doi":"10.1016/bs.podrm.2020.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>The present study describes a comprehensive profile of Bisoprolol including detailed nomenclature; formulae, elemental analysis, appearance, its uses, applications, and methods for the preparation are outlined. The profile contains physicochemical properties of Bisoprolol including pKa value, solubility, X-ray powder diffraction, and methods of analysis (including compendial, electrochemical, spectroscopic, chromatographic and capillary electrophoresis). The study also covers thermal analysis such as differential scanning calorimetry and thermogravimetry of Bisoprolol. Which gives a brief idea of melting point, glass transition as well as differentiation between anhydrous and hydrated forms. In addition to these functional groups and structural confirmation of bisoprolol also presented with the help of Fourier transform infrared spectrometry and nuclear magnetic resonance spectroscopy, respectively. The mass fragmentation pattern of bisoprolol fumarate was reported using the electrospray ionization technique. Some recently reported methods for pharmacokinetic analysis of bisoprolol using high-performance liquid chromatography as well as liquid chromatography-mass spectrometry were also included in the study.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"46 ","pages":"51-89"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2020.07.006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Profiles of drug substances, excipients, and related methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.podrm.2020.07.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The present study describes a comprehensive profile of Bisoprolol including detailed nomenclature; formulae, elemental analysis, appearance, its uses, applications, and methods for the preparation are outlined. The profile contains physicochemical properties of Bisoprolol including pKa value, solubility, X-ray powder diffraction, and methods of analysis (including compendial, electrochemical, spectroscopic, chromatographic and capillary electrophoresis). The study also covers thermal analysis such as differential scanning calorimetry and thermogravimetry of Bisoprolol. Which gives a brief idea of melting point, glass transition as well as differentiation between anhydrous and hydrated forms. In addition to these functional groups and structural confirmation of bisoprolol also presented with the help of Fourier transform infrared spectrometry and nuclear magnetic resonance spectroscopy, respectively. The mass fragmentation pattern of bisoprolol fumarate was reported using the electrospray ionization technique. Some recently reported methods for pharmacokinetic analysis of bisoprolol using high-performance liquid chromatography as well as liquid chromatography-mass spectrometry were also included in the study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比索洛尔:一个全面的档案。
本研究描述了比索洛尔的全面概况,包括详细的命名法;概述了配方、元素分析、外观、用途、应用和制备方法。该剖面包含比索洛尔的理化性质,包括pKa值、溶解度、x射线粉末衍射和分析方法(包括药理学、电化学、光谱、色谱和毛细管电泳)。本研究还涵盖了比洛尔的热分析,如差示扫描量热法和热重法。它简要介绍了熔点,玻璃化转变以及无水和水合形式的区别。此外,还分别利用傅里叶变换红外光谱和核磁共振光谱对比索洛尔的官能团和结构进行了确证。采用电喷雾电离技术研究了富马酸比索洛尔的质量破碎模式。本文还介绍了近年来报道的高效液相色谱和液相色谱-质谱联用分析比索洛尔药代动力学的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Profiles of drug substances, excipients, and related methodology
Profiles of drug substances, excipients, and related methodology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
13.10
自引率
0.00%
发文量
4
期刊最新文献
Avanafil: A comprehensive drug profile. Deferasirox: A comprehensive drug profile. Duvelisib: A comprehensive profile. Ponatinib: A comprehensive drug profile. Regorafenib: A comprehensive drug profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1