Retroactive interference model of forgetting.

IF 2.3 4区 医学 Q1 Neuroscience Journal of Mathematical Neuroscience Pub Date : 2021-01-23 DOI:10.1186/s13408-021-00102-6
Antonios Georgiou, Mikhail Katkov, Misha Tsodyks
{"title":"Retroactive interference model of forgetting.","authors":"Antonios Georgiou, Mikhail Katkov, Misha Tsodyks","doi":"10.1186/s13408-021-00102-6","DOIUrl":null,"url":null,"abstract":"<p><p>Memory and forgetting constitute two sides of the same coin, and although the first has been extensively investigated, the latter is often overlooked. A possible approach to better understand forgetting is to develop phenomenological models that implement its putative mechanisms in the most elementary way possible, and then experimentally test the theoretical predictions of these models. One such mechanism proposed in previous studies is retrograde interference, stating that a memory can be erased due to subsequently acquired memories. In the current contribution, we hypothesize that retrograde erasure is controlled by the relevant \"importance\" measures such that more important memories eliminate less important ones acquired earlier. We show that some versions of the resulting mathematical model are broadly compatible with the previously reported power-law forgetting time course and match well the results of our recognition experiments with long, randomly assembled streams of words.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826326/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-021-00102-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Memory and forgetting constitute two sides of the same coin, and although the first has been extensively investigated, the latter is often overlooked. A possible approach to better understand forgetting is to develop phenomenological models that implement its putative mechanisms in the most elementary way possible, and then experimentally test the theoretical predictions of these models. One such mechanism proposed in previous studies is retrograde interference, stating that a memory can be erased due to subsequently acquired memories. In the current contribution, we hypothesize that retrograde erasure is controlled by the relevant "importance" measures such that more important memories eliminate less important ones acquired earlier. We show that some versions of the resulting mathematical model are broadly compatible with the previously reported power-law forgetting time course and match well the results of our recognition experiments with long, randomly assembled streams of words.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗忘的追溯干扰模式
记忆和遗忘是一枚硬币的两面,虽然前者已被广泛研究,但后者却常常被忽视。为了更好地理解遗忘,一种可行的方法是建立现象学模型,以最基本的方式实现遗忘的假定机制,然后通过实验检验这些模型的理论预测。以往研究中提出的逆行干扰就是这样一种机制,即记忆会因随后获得的记忆而被抹去。在当前的研究中,我们假设逆行消除是由相关的 "重要性 "指标控制的,因此,较重要的记忆会消除较不重要的早期获得的记忆。我们的研究表明,由此产生的数学模型的某些版本与之前报道的幂律遗忘时间过程基本一致,并且与我们用随机组合的长单词流进行的识别实验的结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
期刊最新文献
Canard solutions in neural mass models: consequences on critical regimes. Rendering neuronal state equations compatible with the principle of stationary action. Pattern formation in a 2-population homogenized neuronal network model. Auditory streaming emerges from fast excitation and slow delayed inhibition. A model of on/off transitions in neurons of the deep cerebellar nuclei: deciphering the underlying ionic mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1