Jonathan Platkiewicz, Zachary Saccomano, Sam McKenzie, Daniel English, Asohan Amarasingham
{"title":"Monosynaptic inference via finely-timed spikes.","authors":"Jonathan Platkiewicz, Zachary Saccomano, Sam McKenzie, Daniel English, Asohan Amarasingham","doi":"10.1007/s10827-020-00770-5","DOIUrl":null,"url":null,"abstract":"<p><p>Observations of finely-timed spike relationships in population recordings have been used to support partial reconstruction of neural microcircuit diagrams. In this approach, fine-timescale components of paired spike train interactions are isolated and subsequently attributed to synaptic parameters. Recent perturbation studies strengthen the case for such an inference, yet the complete set of measurements needed to calibrate statistical models is unavailable. To address this gap, we study features of pairwise spiking in a large-scale in vivo dataset where presynaptic neurons were explicitly decoupled from network activity by juxtacellular stimulation. We then construct biophysical models of paired spike trains to reproduce the observed phenomenology of in vivo monosynaptic interactions, including both fine-timescale spike-spike correlations and firing irregularity. A key characteristic of these models is that the paired neurons are coupled by rapidly-fluctuating background inputs. We quantify a monosynapse's causal effect by comparing the postsynaptic train with its counterfactual, when the monosynapse is removed. Subsequently, we develop statistical techniques for estimating this causal effect from the pre- and post-synaptic spike trains. A particular focus is the justification and application of a nonparametric separation of timescale principle to implement synaptic inference. Using simulated data generated from the biophysical models, we characterize the regimes in which the estimators accurately identify the monosynaptic effect. A secondary goal is to initiate a critical exploration of neurostatistical assumptions in terms of biophysical mechanisms, particularly with regards to the challenging but arguably fundamental issue of fast, unobservable nonstationarities in background dynamics.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"131-157"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-020-00770-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Observations of finely-timed spike relationships in population recordings have been used to support partial reconstruction of neural microcircuit diagrams. In this approach, fine-timescale components of paired spike train interactions are isolated and subsequently attributed to synaptic parameters. Recent perturbation studies strengthen the case for such an inference, yet the complete set of measurements needed to calibrate statistical models is unavailable. To address this gap, we study features of pairwise spiking in a large-scale in vivo dataset where presynaptic neurons were explicitly decoupled from network activity by juxtacellular stimulation. We then construct biophysical models of paired spike trains to reproduce the observed phenomenology of in vivo monosynaptic interactions, including both fine-timescale spike-spike correlations and firing irregularity. A key characteristic of these models is that the paired neurons are coupled by rapidly-fluctuating background inputs. We quantify a monosynapse's causal effect by comparing the postsynaptic train with its counterfactual, when the monosynapse is removed. Subsequently, we develop statistical techniques for estimating this causal effect from the pre- and post-synaptic spike trains. A particular focus is the justification and application of a nonparametric separation of timescale principle to implement synaptic inference. Using simulated data generated from the biophysical models, we characterize the regimes in which the estimators accurately identify the monosynaptic effect. A secondary goal is to initiate a critical exploration of neurostatistical assumptions in terms of biophysical mechanisms, particularly with regards to the challenging but arguably fundamental issue of fast, unobservable nonstationarities in background dynamics.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.