Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes.

IF 2.4 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Sexual Development Pub Date : 2021-01-01 Epub Date: 2021-05-05 DOI:10.1159/000515191
Carlos A Strüssmann, Yoji Yamamoto, Ricardo S Hattori, Juan I Fernandino, Gustavo M Somoza
{"title":"Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes.","authors":"Carlos A Strüssmann,&nbsp;Yoji Yamamoto,&nbsp;Ricardo S Hattori,&nbsp;Juan I Fernandino,&nbsp;Gustavo M Somoza","doi":"10.1159/000515191","DOIUrl":null,"url":null,"abstract":"<p><p>Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 1-3","pages":"80-92"},"PeriodicalIF":2.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000515191","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000515191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 9

Abstract

Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
终点在哪里:动脉状鱼类性别决定的概述。
最近,Atheriniform鱼类在性别决定的进化、生态和分子/生理研究中成为有吸引力的模型。这一群体中的许多物种都有明显的温度依赖性性别决定(TSD),但许多物种也有一个性别决定基因,为雄性分化提供了强大的动力。因此,在这些物种中,曾经被认为是相互排斥的两种性别决定形式,环境(ESD)和基因型(GSD)性别决定,可以在环境相关条件下共存。本文综述了目前鱼类性别决定的研究进展,重点介绍了ESD和GSD的分子和生理机制,这两种机制的共存和相互作用,以及环境信息在角外转导和/或角外开始性别决定的可能性。以及利用耳石增量分析和遗传性别分子标记等新工具对新旧大陆鸟类进行实地研究的结果。我们还讨论了分子和组织学机制的存在,以防止由于不明确或相互冲突的环境和遗传信号而导致部分性腺分化的差异,特别是雌性是这些物种默认状态的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sexual Development
Sexual Development 生物-发育生物学
CiteScore
4.00
自引率
4.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: Recent discoveries in experimental and clinical research have led to impressive advances in our knowledge of the genetic and environmental mechanisms governing sex determination and differentiation, their evolution as well as the mutations or endocrine and metabolic abnormalities that interfere with normal gonadal development. ‘Sexual Development’ provides a unique forum for this rapidly expanding field. Its broad scope covers all aspects of genetics, molecular biology, embryology, endocrinology, evolution and pathology of sex determination and differentiation in humans and animals. It publishes high-quality original research manuscripts, review articles, short reports, case reports and commentaries. An internationally renowned and multidisciplinary editorial team of three chief editors, ten prominent scientists serving as section editors, and a distinguished panel of editorial board members ensures fast and author-friendly editorial processing and peer reviewing.
期刊最新文献
Analysis of Functional Cis-regulatory Elements Reveals Novel Transcriptional Regulatory Mechanisms in Gonadal Development. An International Delphi Based Study for Developing A Core Outcome Set For Hypospadias Surgery. One-Step Leaping Evolution from an Autosomal Pair to the Heteromorphic Sex Chromosomes. Exploring Testicular Descent: Recent Findings and Future Prospects in Canine Cryptorchidism. Inhibiting p38α and -β MAPK Affects Testis Development in the Marsupial Tammar Wallaby.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1